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Abstract

Purpose: The most frequently used model for simulating multireader multicase (MRMC) data
that emulates confidence-of-disease ratings from diagnostic imaging studies has been the Roe
and Metz (RM) model, proposed by Roe and Metz in 1997 and later generalized by Hillis
(2012), Abbey et al. (2013), and Gallas and Hillis (2014). A problem with these models is that
it has been difficult to set model parameters such that the simulated data are similar to MRMC
data encountered in practice. To remedy this situation, Hillis (2018) mapped parameters from the
RM model to Obuchowski—Rockette (OR) model parameters that describe the distribution of the
empirical AUC outcomes computed from the RM model simulated data. We continue that work
by providing the reverse mapping, i.e., by deriving an algorithm that expresses RM parameters as
functions of the OR empirical AUC distribution parameters.

Approach: We solve for the corresponding RM parameters in terms of the OR parameters using
numerical methods.

Results: An algorithm is developed that results in, at most, one solution of RM parameter values
that correspond to inputted OR parameter values. The algorithm can be implemented using an
R software function. Examples are provided that illustrate the use of the algorithm. A simulation
study validates the algorithm.

Conclusions: The resulting algorithm makes it possible to easily determine RM model
parameter values such that simulated data emulate a specific real-data study. Thus, MRMC
analysis methods can be empirically tested using simulated data similar to that encountered in
practice.
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1 Introduction

For the typical diagnostic radiology study, several readers (typically radiologists) assign con-
fidence-of-disease ratings to each case (i.e., subject) based on one or more corresponding radio-
logic images. The resulting data are called multireader multicase (MRMC) data. These studies
are typically used to compare different imaging modalities with respect to reader performance.
Often measures of reader performance are functions of the estimated receiver-operating-
characteristic (ROC) curve, such as the area under the ROC curve (AUC). The Obuchowski
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and Rockette method (OR)' is a commonly used method of analyzing reader performance out-
comes which results in conclusions that generalize to both the reader and case populations.

The most frequently used model for simulating MRMC data that emulate confidence-of-
disease ratings from such studies has been the model first proposed by Roe and Metz> and later
generalized by Hillis,” Abbey,* and Gallas and Hillis.> We will refer to each of these models as
the “Roe and Metz” (RM) model when there is no need to distinguish between them. Numerous
studies have used this model for evaluating MRMC analysis and sample size methods. As dis-
cussed by Hillis,® the RM model generates continuous confidence-of-disease ratings based on an
underlying binormal model for each reader—test combination, with the separation between the
normal and abnormal rating distributions varying across readers.

Because RM model parameters are expressed in terms of the latent rating data distribution,
in contrast to MRMC analysis results that are almost always expressed in terms of parameters
that describe the distribution of the reader performance outcomes, it has been difficult to set RM
model parameter values such that the simulated data exhibit characteristics that are similar to
MRMC data encountered in practice. To remedy this situation, Gallas and Hillis’> mapped the
RM model parameters to variance and covariance parameters that describe the distribution of the
empirical AUC outcomes computed from RM simulated data. Similarly, Hillis® mapped the RM
model parameters to OR parameters that describe the distribution of empirical AUC outcomes
computed from RM simulated data. This paper continues that work by developing a numerical
algorithm that expresses the RM parameters as functions of the empirical AUC distribution OR
parameters. This result makes it easy to determine RM model parameter values such that the
simulated data emulate a specific real-data study. The primary uses for the proposed algorithm
are testing MRMC analysis methods and computing power estimates, using simulated MRMC
data that match real data sets with respect to the empirical AUC distribution OR parameter
estimates.

An outline of this paper is as follows. In Sec. 2, we discuss the original Roe and Metz model,
the Hillis® generalization of it, and the OR model and analysis method. In Sec. 3, we discuss the
numerical OR-to-RM algorithm that maps OR parameters to RM parameters, which is derived
in Appendix A for the Hillis® generalization of the original RM model. In Sec. 4, we illustrate
using the OR-to-RM algorithm and the previously derived RM-to-OR algorithm to simulate data
emulating a real-data study, along with other examples and remarks concerning the use of the
two algorithms. The paper concludes in Secs. 5 and 6.

2 Previous Methods
2.1 Roe and Metz Models: Original and Constrained Unequal-Variance

2.1.1 Original RM model

Let X denote a confidence-of-disease rating assigned by a reader to a case; X is often called
a decision variable (DV). The original RM simulation model proposed by Roe and Metz” is a
mixed four-factor (test, reader, case, and truth) ANOVA model for X with case nested within
truth; test, reader, and truth crossed; test and truth treated as fixed factors; and reader and case
treated as random factors. Note that we use “test” as a general term that can refer to a diagnostic
test, imaging modality, or a treatment. Throughout this paper, we only consider the situation of
comparing two tests.
Using the RM notation, the model is given as

Xijke = He + Tip + Rjy + Cip + (TR)j, + (2C) gy + (RC) jiy + (2RC) 5 + Eijias (1)

where X, denotes the confidence-of-disease rating for test 7, reader j, case k of truth state 7, and
t = —, 4, with “—” indicating a nondiseased case and “+” indicating a diseased case. Here, 4, is
the effect of truth state ¢, 7;, is the interaction effect of test i and truth state 7, R, is the interaction
effect of reader j and truth state ¢, Cy, is the effect of case k nested within truth state ¢, the
multiple symbols in parentheses denote interactions, and E;j, is the error term. Thus, X,
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denotes the confidence-of-disease rating assigned to case k of truth state ¢ by reader j when
reading under test i. All effects are random except for y, and z;,. The random effects are mutually
independent and normally distributed with zero means. Roe and Metz denote the corresponding
variance components by 6%, 6%, 62, 62¢» Gxc» 62pc» and 6%. They note that 6%, and 6% cannot
be estimated separately for this model with no replications, as re-reading images in radiological
studies is uncommon due to the cost, and hence define

07 = 02pc + 0%
Although not mentioned by Roe and Metz, the omission of test, reader, and test-by-reader effects
that do not depend on truth is justified by the invariance of the ROC curve to location shifts; thus
inclusion of these terms would not change the ROC curve for a given reader. Note that inter-
actions with truth are denoted only by a ¢ subscript in Eq. (1).
Roe and Metz constrain the sum of the error variance and variance components involving
case to be equal to one:

62C+63C+6§C+6§:1. 2)

It follows from this constraint® that the fixed-reader nondiseased and diseased DV distributions
have unit variances (and hence their ROC curves are symmetric about the negative 45 deg diago-
nal), with the fixed-reader AUCs varying across the reader population.

Without loss of generality, Roe and Metz impose the constraints

Ho =Ti- =Ty =714 = Tpy =0, €)

which result in the same DV distributions for both tests 1 and 2. Under this constraint, it can be
shown® that the mean and median separation of the nondiseased and diseased DV distributions
across the reader population is given by u, and the median reader-specific AUC is given by

A, = ®(u,/+/2), where ® is the cumulative distribution function of the standard normal
distribution.

2.1.2 Unequal test DV distributions

Although Roe and Metz only consider simulations for equal test DV distributions for each
reader, the model can be easily modified to allow for test DV distributions that differ in their
median AUC values by not setting 7, to zero, that is, only the constraints

po=t_=17_=17,=0 )

are imposed. It follows that the median AUCs for tests 1 and 2 are equal to AEO = ®(5;/ \/5),
i = 1,2, respectively, where

Op=py +ry =12 ®)
are the mean and median separations of the nondiseased and diseased DV distributions for tests

1 and 2, respectively, across the reader population. From constraints Eq. (4), it follows that
01 = u. for test 1 and 8, = p, + 75, for test 2. To insure that Ag” > .5, we assume
6,20, i=1.2. (6)

Note that the RM model that allows for test-dependent AUCs is completely defined by seven
parameters:

51,8,,0%, 02, 0%, 02, and . 7
Note that 62 can be computed using Egs. (2) and (7).
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2.1.3 Constrained unequal-variance RM model (RMH model)

In practice, estimated binormal-model nondiseased and diseased distribution variances for a
reader-test combination are often different, with diseased subjects typically having more variable
test results. Thus to better emulate real data, Hillis®* modified the original RM model by allowing
variance components involving cases to depend on truth, with variance components involving
diseased cases set equal to those involving nondiseased cases multiplied by the factor 1/52,
b > 0. Specifically, the model is given by Eq. (1) with variance components (using
an obvious notation) denoted by 6%, 6%, azc(_), GEC(_), a%ec(_), o2 oy GZC(+), o-fc(+>, O'%ecu-)’ and

2
6€(+) ’

Similar to Eq. (2), the constraint

(
: 2 _ 2.2 2 _ 22 2 _ 2.2 2 _ 2.2
with 0o = b Oc(<y Orc(s) = b Orcc) Ore(+) = b Orc(<) Oe(4) = b ooy

9¢(-) + i) F ey T oo = 1 ®)
is imposed. It follows that
2 2 2 2 )
e Oy T Ore) T Oy =0

Constraint Eq. (6) is also imposed. We will refer to this model as the constrained unequal-
variance RM model or simply as the RMH model, with the “H” in RMH indicating that it
is the generalization of the original RM model proposed by Hillis.?

Similar to the original RM model,” imposing constraint Eq. (3) results in the null model
with Ag) = Ag) = ®(u, /V1+b~?), and imposing constraint Eq. (4) results in the nonnull
model with

Agi) = q’((ﬂ+ +1)/V1+ b_z)
:¢(5i/\/1+b‘2>, i=1,2,

where again A§’> denotes the median AUC across the reader population for test i, §; is defined
by Eq. (5), and §; is the mean and median DV separation for test i across readers.

The algorithm discussed in this paper will be for the RMH model, which includes the original
RM model® as a special case when b is set equal to 1. Note that the RMH model that allows
for test-dependent AUCs is completely defined by the eight linearly independent parameters

b,8,,5,,0%, 6%, ‘72c(—)v GZC(—)’ and o-iq_). We let frmp denote the vector of these parameters:

/))RMH = (b, 51 . 52, O'%Q, O'%R, 6%,(_> N O'?C(_), O-IZQC(—))' (9)

2.2 Obuchowski-Rockette Model

Obuchowski and Rockette! proposed a test X reader factorial ANOVA model for the AUC esti-
mates, but unlike a conventional ANOVA model, the errors are assumed to be correlated to
account for correlation due to each reader evaluating the same cases. Their model, which
we refer to as the OR model, is given as

~

0ij = Hor + Ti:0r + Rj:0r + (TR);j.0r + €ij:0R (10)

where pog is the intercept term, 7;.or denotes the fixed effect of test i, R;.or denotes the random
effect of reader j, (7R);;.or denotes the random test X reader interaction, and &;;. o is the error
term. The R;.og and (zR), j:or are assumed to be mutually independent and normally distributed
with zero means and respective variances 6%.or and 6%g.or- (OR in the subscripts is to distin-
guish OR effects and variance components from similarly notated RMH-model quantities.)
The &;j.0r are assumed to be normally distributed with mean zero and variance 62, and are
assumed uncorrelated with the R;.or and (7R);;.or- Three possible error covariances are
assumed:
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Cov, i#i’,j= j'(different test, same reader)
Cov(e;j.0r €j:0r) = § Covy i =1i',j# j'(same test, different reader) . (11)
Covy i#1i’,j# j'(different test, different reader)

The OR model assumes’

Cov; > Covy, Cov, > Cov;, Cov; >0. 12)

These error variance—covariance parameters are typically estimated by averaging correspond-
ing conditional-on-readers estimates computed using the jackknife,® ' bootstrap,'®!" the method
proposed by DeLong et al.'? (for empirical AUC estimates), or the method proposed by Metz
et al.'® based on the semiparametric binormal ROC model. These four estimation methods are
consistent but are not unbiased. An unbiased error covariance estimation method (unbiased
method) was recently proposed by Hillis®!* for use when empirical AUC is the outcome. This
method utilizes the unbiased fixed-reader method discussed by Gallas [Ref. 15, p 362] for esti-
mating the error variance, and extensions of it for estimating the error covariances. This method
results in unbiased OR parameter estimates when data are generated from the RMH model.® OR
analysis using this method is included in the freely available R software package MRMCaov.'°

The €;;.0r can be interpreted as AUC measurement error attributable to the random selection
of cases and within-reader variability that describes how a fixed reader interprets the same image
in different ways on different occasions. The OR model can alternatively be described with
population correlations r; = Cov;/62. o replacing corresponding Cov;.

Defining

H1:0R = HOR T T1:0R>

H2:0R = HOR T 72:0R>

the OR model for two tests, similar to the RMH model, is defined by eight linearly independent
parameters:

ﬂleR,ﬂZZOR,U%e:OR,G%R:OR,Gg:OR,COVI,COVZ, and Covs, (13)
or equivalently, by
ﬂl:ORv/lz:ORvH%Q;OR,G%R;OR»Uz;om ry, 1y and r3. (14)
We let for denote the vector of these parameters:
Bor = (H1:0R» H2:0R> O:0R> OTR:0R> O2:0R> "1+ 72, 73)- (15)

Note that when the outcome is the empirical AUC that y;.or and p,.or are the test 1 and test 2
expected values for the empirical AUC estimates across readers and cases.

3 Proposed Methods

3.1 OR-to-RMH Algorithm for Estimating RMH Parameter Values
When the Goal Is to Emulate a Real-Data MRMC Study

The RMH-to-OR mapping, previously derived by Hillis,® and the new OR-to-RMH algorithm
that maps OR parameters to RMH parameters and its development are provided in Tables 6 and
10, respectively, in Appendix A.

In this section, we discuss the main points of the OR-to-RMH algorithm when the goal is to
emulate data from a real study with the RMH model; i.e., to determine RMH parameter values
such that the expected values of the OR parameter estimates from the simulated MRMC samples
are described by the for vector Eq. (15), estimated from a real study.
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The for vector Eq. (15) implicitly provides information about the shape of the underlying
ROC curve through the value of 62. o, which is a function of the RMH b parameter in the RMH-
to-OR mapping. The method used for estimating the RMH b parameter for the OR-to-RMH
algorithm is called the b_method. To estimate a Sryy vector Eq. (9) that maps to a particular
Por vector Eq. (15), the algorithm requires use of the option b_method = unspecified,
which we assume throughout this section. Two other options for b_method and the situations
where they are useful will be discussed in Sec. 3.2.

3.1.1 Overview of OR-to-RMH algorithm

Table 6 in Appendix A gives the previously derived analytical RMH-to-OR mapping formulas.®
Mathematically, we describe this transformation by the function f that maps the RMH parameter
vector and the case samples sizes that will be used for the simulations to the resulting OR param-
eter vector:

f(Brvus 19, 11) = Por- (16)

This function is analytical and thus does not require a numerical algorithm.

The OR-to-RMH algorithm requires inputted values for fogr, 119, 71, and b_method, where
Por 1s given by Eq. (15) and ny and n; are the corresponding real-study nondiseased and dis-
eased case sizes. To derive the OR-to-RMH algorithm, we first assume that there exists an RMH
parameter vector fryy corresponding to for such that Eq. (16) is true. We then express the OR
parameters in terms of the RMH parameters and solve for the RMH parameters using numerical
methods (see Appendix A for details.)

It is possible that there are several fryy vectors satisfying Eq. (16), in which case the cor-
responding fryy vectors will differ only in their b values, as discussed in Appendix A. It is also
possible that there is no fryy vector that satisfies Eq. (16). To force the OR-to-RMH algorithm
to produce, at most, only one output, the fryy vector with b closest to 1 with 0.01 < b <1 1is
chosen; if no corresponding frmy vector has 0.01 < b < 1, then the corresponding fryy vector
with b closest to 1 with 1 < b < 4 is chosen. If there are no corresponding fryy solution vectors
with 0.01 < b < 4, the algorithm does not return a solution for fryy; see Sec. 3.1.3 for what to
do when this happens.

Let g; denote the function defined by the OR-to-RMH algorithm, with b_method =
unspecified, that maps fog to a solution for fryvy, denoted by Srmvu:solutions 1-€-»

91(Bor: 1g» 1) = Prvsolution- (17

Ideally, Srmu:solution Will be such that the RMH-to-OR mapping will return the original OR
parameter, i.e.,

f(ﬂRMH;solutionv no, nl) = ﬂOR' (18)

However, it is possible for the OR-to-RMH algorithm to return a solution such that Eq. (18)
holds only approximately, i.e.,

f(ﬂRMH;solutionv ng, ny) = Por- (19)

The approximation results because of constraints on the RMH parameters that are imposed by
the algorithm, as discussed in Appendix A and given in Eq. (23) in Table 7. For example, if the
inputted value of r; exceeds that of r, then the solution Srmpy.solution Will be such that r, > 73

in f (ﬁRMH;solutions ny, ”1)-

Rationale for the b limits. The lower and upper limits for » of 0.01 and 4 are chosen
because b values outside these limits are not realistic for most real data sets. In most situations,
a meaningful DV should be an increasing transformation of the likelihood ratio (likelihood of
being diseased divided by likelihood of not being diseased).'” A DV having this property and its
corresponding ROC curve are said to be proper; otherwise they are said to be improper [Ref. 18,
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(@) b<1
AUC =0.8 AUC =0.9 AUC = 0.95

TPF

b=0.01 —— =" b=050
--------- Chance line

AUC = 0.95
. :
L
o
= l
I,
0.2 .46 81 0.2 4.6 81
——— b=4 ———-bp=2

--------- Chance line

Fig. 1 ROC curves as a function of AUC and b. TPF, true positive fraction (or sensitivity); FPF,
false positive fraction (or 1 — specificity).

pp. 19, 37]. A proper ROC curve is concave (down) and never crosses the chance line.'” It fol-
lows that an ROC curve that has “hooks” and crosses the chance line is improper. Pan and
Metz!"” note that hooks for fitted binormal ROC curves do not appear when fitting curves to
reliable data sets, which strongly suggests that the true underlying ROC curves do not show
such hooks for real-data studies. Thus, we have limited the underlying ROC curves to have
b values between 0.01 and 4.0 since for typical AUC values (<0.95) it can be shown that
ROC curves with b values outside of these boundaries have noticeable hooks.

For example, Fig. 1 shows ROC curves with AUCs of 0.8, 0.9, 0.95 for values of b =
0.01,0.5 [Fig. 1(a)] and b = 2.4 [Fig. 1(b)]. We see that the ROC curves for the extreme cases
of b = 0.01 [Fig. 1(a)] and b = 4 [Fig. 1(b)] are noticeably improper because they have hooks in
the upper right and lower left corner, respectively, with the ROC curves below the chance line in
those regions. Although not shown, the improperness becomes more noticeable as b decreases
below 0.01 or increases above 4.0, or as the AUC decreases below 0.8. The ROC curves

were computed using the equation TPF = ®(a + b®~'FPF), with a = b®~!(AUC),/1 + (3)*
and TPF and FPF denoting the true positive fraction (sensitivity) and false positive fraction
(1 — specificity), respectively. (The expression for a results from the conventional binormal

ROC relationships y = ®~!(AUC),/1 + (1)? and y = a/b).

Simulation of data to emulate a real-data study. Figure 2 summarizes how the OR-to-
RMH and RMH-to-OR algorithms can be used to simulate data that emulate a real-data study.
The OR-to-RMH algorithm (with b_method = unspecified) is applied to OR estimates
(Bor;input) Obtained from a real-data study, resulting in the corresponding RMH model. This
model is then used for generating MRMC samples for any specified number of readers and cases,
with n§ and n} denoting the case numbers for the simulations and n, and n; denoting the case
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| BoR;inputs P05 71 | Estimates for parameters in

2
Bor = (H1.0Rs H1:0R TR:0Rs OTR:ORs O2:0Rs T1,72,73) , computed
from a real-data MRMC study having case sample sizes

no and n.
hd
| g, (,BOR;input, g, nl) | Apply OR-to-RMH mapping with b _method = unspecified.
| BRMH;solution | RMH model parameters corresponding to Bog .input» 705 P1-

To use the model for simulations, the number of readers and
nondiseased and diseased cases must be specified.

f (IBRMH;solutionv ng, n) Apply RMH-to-OR mapping using nondiseased and
diseased cases sizes equal to ng and nj.

A4

| BoR;outputs 70> ?1 | OR parameter values that describe

the empirical AUC distribution for MRMC samples

with case sizes ng and nj, simulated from

the RMH model based on Brym;solution- NOte that Bogr.output
does not depend on the number of readers.

Fig. 2 Flowchart illustrating the use of the OR-to-RMH and RMH-to-OR algorithms to simulate
MRMC data that emulate a real-data study.

numbers for the original real-data study. The distribution of the empirical AUCs for the simulated
data is described by for.oupu- We recommend always checking how closely the simulated data
emulate the study data by comparing Soinpuc 20d Sor;oupur When the simulation model generates
samples with the same case sizes as the original study, i.e., with nj = ny and n} = n,.

3.1.2 Should the simulated ROC curves resemble the original study ROC
curves?

We emphasize that even when simulating data using an RMH model such that Sog.oupu =
Por:inpue 0 Fig. 3, we do not claim that the resulting empirical ROC curves will be visually
similar to those estimated from a real-data study. Rather, we only claim that the expected values
of the OR parameter estimates for the simulated data will be the same as those computed from the
original real-data study, given by Eq. (13). (Note that Eq. (13) contains the error covariances
rather than the error correlations.) However, because of the robustness of the binormal model
assumption for fitting ROC curves to real data,”’>> we typically expect there will be some resem-
blance, although the degree of resemblance will be limited by the RMH model having only eight
parameters. In particular, we note that the RMH model requires each reader’s ROC curve to have
the same b value, which will determine the shape of the ROC curve for a given reader AUC
value; this result follows from the one-to-one correspondence between (b, AUC) and (a, b), with

a = b®(AUC),/1 + (})?, as mentioned in Sec. 3.1.1.

3.1.3 Reasons for neither an exact nor approximate solution

OR-to-RMH algorithm does not work because there is not a solution forb. For
given values of the RMH parameters 8, , 8,, 6%, and 67, (computed in steps 1 to 3 of the OR-to-
RMH algorithm in Table 10), the value of b (computed in step 4) determines the value of Gg;om
It can happen that the algorithm does not produce a solution for b, either because no solution
exists, or the solution is <0.01 or >4.0 that will yield the input value for 2.y for the values of
51, 8,, 0%, and 6%, that have been computed by the algorithm in previous steps. When this occurs,
one can choose to use one of the other two methods for estimating b, as discussed in Sec. 3.2.

OR-to-RMH algorithm does not work because there is not a solution for an
RMH parameter other than b. When required, the algorithm imposes the constraints

Journal of Medical Imaging 045501-8 Jul/Aug 2022 « Vol. 9(4)



Hillis, Smith, and Chen: Determining Roe and Metz model parameters for simulating multireader multicase. . .

in Table 7(b) by altering somewhat the inputted OR parameter values, which can lead to an
approximate solution as given by Eq. (19). However, when other constraints, which are implied
by the RMH-to-OR mapping in Table 6, do not hold, the result is a missing value for the par-
ticular RMH parameter and for all other RMH parameters requiring it for their computation.
For example, from the equations in Tables 8 and 9, it can be shown that there is an upper limit
for 6%. or, Which is a function of the values of the inputted values for u.og and y,.og. Similarly,
it can be shown that there are upper limits for 675.0r, 71, 72, and r3, which are functions of
parameters computed in previous steps. When one of these values exceeds its upper limit, the
algorithm does not yield a solution.

This problem is more likely to happen when inputted values for for are conjectured than
when they are estimates from a real-data study. If this problem occurs, we first recommend that
the inputted values be checked for entry errors. If there are none, then we suggest inputting a
different (typically smaller) value for the OR parameter corresponding to the RMH parameter,
which cannot be estimated. See Appendix A and Table 5 for more details and Sec. 4.3.7 for
examples illustrating this problem.

3.2 OR-to-RMH Algorithm for Estimating RMH Parameter Values When the
Goal Is to Emulate AUCs, OR Correlations and Variance Components,
But Not GE:OR

As discussed by Hillis,** the OR parameters #.or, #2:0r> 0%:or»> Nd 675 or have meaningful
interpretations that do not depend on sample size, and ry, r,, and r;3 have meaningful interpre-
tations that remain approximately (but not exactly) constant as the sample sizes change. On the
other hand, 62.y varies with the sample sizes. In this section, we discuss two approaches for
determining RMH parameters that result in simulated MRMC data for which the empirical AUC
distribution matches conjectured values of the parameters in

D 2 2
Por = (ﬂl:OR»ﬂZ:ORsOR;ORvO'TR;ORv ry, 1, V3)~

Note that [}OR is the same as figg but without af;OR. The value of 62. o for the simulated data will
be determined by the sample sizes and the RMH parameters.

These approaches are useful when one is primarily interested in simulating data that match an
OR correlation and variance component structure and a real-data value of 62. o is not available.
They also are useful when real-data estimates for g are available but there is no solution for b
using the OR-to-RMH algorithm with »_method = unspecified.

3.2.1 Overview

The two approaches are similar to that described in Sec. 3.1, except that estimation of b does
not depend on an inputted value for 62. ;. Instead, b is either (1) explicitly specified using
b_method = specified and setting the value of the input variable b_input equal to the desired
value for b; or (2) computed so as to result in a median specified mean-to-sigma ratio across
readers, using b_method = mean_to_sigma and setting the value of the input variable mean_
sig_input equal to the desired mean-to-sigma ratio.

Use of the OR-to-RMH and RMH-to-OR algorithms to simulate data using these two
approaches is summarized in Fig. 3. Figure 3 is similar to Fig. 2 with these differences: (1) No
input value for 62, is included because the input values are for Por instead of for fog.
(2) For the OR-to-RMH algorithm, the g, or g; function (as defined below) is used in the
place of the g; function. Note that the outputted OR parameter values include a value
for 03:0R~

Approach 1: b_method = specified. With this approach, the value of b is specified.
For example, the parameter values for the original> RM model can be determined by setting
b_input = 1.
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BoR;inputs o> M1 Conjectured values for parameters in

P _ 2 2

Bor = (Nl;ona#LOR"’R;OR: UTR:OR’TMT%TB) )
and for case sample sizes ng and n;. Note that
a value for o2 is not specified

hd

gs (,BOR;input, g, nl) Apply OR-to-RMH mapping with
b_method = specified and an inputted value for b.
or

gs (BOR;input’ Mg, n1> Apply OR-to-RMH mapping with b method = mean_to_sigma

and an inputted median mean-to-sigma value.

W

| BrMH;s0lution | RMH model parameters corresponding to

BoR;input> M0, 1. To use the model for simulations, the number
of readers and nondiseased and diseased cases must be
specified.

W

if (IBRMH;solution’ ng, n}) Apply RMH-to-OR mapping using nondiseased and
l diseased cases sizes equal to nj and nj.

| BoRr;outputs 70> 71 I OR parameter values that describe the empirical AUC
distribution for MRMC samples with case sizes n§ and nj,
simulated from the RMH model based on Sgyy.solution -

Note that Bog.output includes a value for o2.

Fig. 3 Flowchart illustrating the use of the OR-to-RMH and RMH-to-OR algorithms to simulate
MRMC data that emulates OR AUCs, reader variance components, and OR correlations, but
not 62 og.

Let g, denote the function defined by the OR-to-RMH algorithm, with b_method =
specified, that maps BOR and an inputted value of b to a solution for Sryy, denoted by

ﬂRMH;solution; ie.,
92(Por» g, 1y, b_input) = Sryim:solution- (20)

Again, ideally Srmpisonion Will be such that f(Brmm:solutions 0 1) = Por. However, similar
to using b_method = unspecified, it is possible for the OR-to-RMH algorithm to return
a solution such that f(Srymsolutions Ho» 111) & Por because of constraints on the RMH parameters
Eq. (23) in Table 7 that are imposed by the algorithm.

Approach 2: b_method = mean_to_sigma. Recall from Sec. 3.1.3 that when
b_method = unspecified is used, the value of b (based on the computed values of the
RMH parameters 5, 5,, 6% and o7) is determined such that 2. for the simulated data will
match the inputted value for 0§:OR. In contrast, when b_method = mean_to_sigma is used,
the user specifies a desired median mean-to-sigma value (see discussion of the mean-to-sigma
measure below) across readers for the test corresponding to the minimum of the inputted p;.or
and p,.or values.

Let g5 denote the function defined by the OR-to-RMH algorithm with 5_method = mean__
to_sigma that maps BOR and an inputted value of the mean-to-sigma ratio, denoted by ¢, to
a solution for fryy:

93(Por-10: 11, 4) = PrH:solution- 2D
As was the case for the other two b estimation methods, ideally, f(Brum:solution 05 11) = Bors
but it is possible for this relationship to hold only approximately because of constraints on the

RMH parameters.
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3.2.2 Mean-to-sigma ratio

The mean-to-sigma ratio, denoted by ¢, is defined as the difference of the latent diseased and
nondiseased DV means divided by the difference of their standard deviations. The mean-to-
sigma ratio was first introduced by Swets,”* who noticed that it seemed to be approximately
constant for a variety of experiments. Some support for this conclusion was provided by later
analyses.”>*?® For example, Green and Swets’® note that ¢ ~ 4 is typical for many studies.

As discussed by Hillis and Berbaum,”’ ¢ can be used as a measure of improperness for a
binormal ROC curve; specifically, it indicates that the ROC curve crosses the chance line at
fpf = ®(q), where fpf is the false positive fraction. They point out that it follows that an absolute
value <2 indicates a noticeably improper binormal curve and an absolute value of infinity indi-
cates a symmetric curve (b = 1).

For the RMH model, the mean-to-sigma ratio varies across readers. To avoid simulating
data based on visibly improper binormal curves, we suggest that the probability of a reader’s
true ROC curve being noticeably improper be small for each test, e.g., <0.025. This probability
can be computed as a function of the RMH parameters, as discussed in Appendix B.1.

4 Results and Examples

4.1 R language Functions

Two functions written in the R statistical software language that perform the OR-to-RMH and
RMH-to-OR mappings are available within the freely available MRMCaov R package,'® which
can be downloaded from the Github repository: https://github.com/brian-j-smith/MRMCaov.
The function OR_to_RMH transforms OR parameters to RMH parameters using the numerical
algorithm described in Table 10, and the function RMH_to_OR performs the analytical RMH-to-
OR transformation, described in Table 6.

4.2 Example: Using the Algorithms to Simulate Data Emulating a Real-Data
Study

4.2.1 Approach

In this section, we illustrate the use of the algorithms to simulate data that emulate data provided
by Carolyn Van Dyke (VanDyke),?® which we have used for examples in previous papers,>*°
with empirical AUC being the reader performance metric. The study compared the relative per-
formance of single spin-echo magnetic resonance imaging (SE MRI) to cinematic presentation
of MRI (CINE MRI) for the detection of thoracic aortic dissection. There were ny, = 69 patients
without a dissection and n; = 45 patients with an aortic dissection imaged with both SE MRI
and CINE MRI; cases were evaluated by five readers using a five-point ordinal confidence-of-
disease scale. Similarly, each RMH simulated sample emulated five readers, each evaluating the
same 69 nondiseased and 45 diseased cases.

We apply the OR-to-RMH algorithm to the set of parameter estimates (“original” values)
obtained from an OR analysis of the data set to obtain corresponding RMH parameters values,
simulate 10,000 MRMC samples based on the RMH values and analyze each simulated sample
using an OR analysis, using the unbiased error covariance method, with the outcome being the
empirical AUC. We set b_method = unspecified for the OR-to-RMH algorithm.

Figure 4 shows the computation of the RMH simulation model and the “true values,”
which we define as the OR parameter values that describe the true distribution of the empirical
AUCs computed from the simulated samples; i.e., the true values are the same as the outputted
OR parameter values, given by for.oupu- We see that for this data set the outputted values are
the same as the inputted values, and hence the original OR estimates exactly describe the true
distribution of the simulated empirical AUC estimates. The R code and output for the OR-to-
RMH and RMH-to-OR functions used to produce the results in Fig. 4 are provided in
Appendix C.1.
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Hi:or  H2:.0r TRoR 0% ROR TZ0R 71 T2 T3
BoRrjinpus = [0.897, 0.941, 0.001540, 0.000208, 0.000788, 0.433, 0.430, 0.299]
ny = 69, n,= 45

|91 (ﬁon;inputa ny =69, m, = 45)|
{
b 1 b2 o% Orr 0% o%rc Tho
BrMH;s0lution =  [0-656081,  2.392224, 2.957030, 0.122342, 0.005181, 0.471697, 0.122226, 0.109145]

l

|f (BrMH;s0lutions 75 = 69, nj= 45)|
L P) P) 3
Hior  H2:0R OR:OR ITR:OR 0¢:.0R 71 72 73
BoR:outpus = [0-897,  0.941, 0.001540, 0.000208, 0.000788, 0.433, 0.430, 0.299]

Fig. 4 Flowchart, analogous to Fig. 2, illustrating the use of the OR-to-RMH and RMH-to-OR
algorithms to simulate MRMC data that emulate the VanDyke?® data.

4.2.2 Simulation study results

Table 1 presents the simulation study results. “Unbiased estimates” are the empirical estimates
(the means across the simulated sample estimates) for the first eight parameters (4.0r, H#2:0r>
6%.0r> - - - » COv3), where OR estimates for each sample were computed using the OR method
with the unbiased covariance estimation method discussed in Sec. 2.2. Because the sample esti-
mates for the sample-level correlations ry, r,, and r; are not unbiased, instead of reporting the
empirical estimates we report the quotients resulting from dividing the corresponding empirical
covariance estimates by the empirical error variance estimate. For example, the estimate of 0.434
for r, is computed by dividing the Cov, estimate (0.000343) by the 62., estimate (0.000791).
Because the resulting estimates are not the means of the sample-level correlations, empirical bias
estimates and 95% confidence intervals for the correlations are not included.

“(Est - true)/true” is defined as (estimate — true value)/(true value); it describes the deviation
of the estimate from the true value and is expressed as a percentage of the true value. For the first
eight parameters (i.e., not the correlations), these values can also be interpreted as the empirical
estimates of statistical bias expressed as a percentage of the true value. “Within 95% CI?” is
“yes” if the empirical 95% confidence interval (not shown) includes the true value, and otherwise
is “no.”

We see that the unbiased estimates for the first eight parameters differ by <1.38% from the
true values and that the correlation estimates differ by <0.53%. Moreover, all of the 95% empiri-
cal confidence intervals include the true value. Thus, the unbiased estimates agree with the true
parameter values and hence provide validation for the OR-to-RMH algorithm.

Plots of the empirical ROC curve for the VanDyke original data and for the first three simu-
lated MRMC samples, based on the RMH model given in Fig. 4, are displayed in Fig. 5. Like the
VanDyke study, each simulated sample has five independent readers reading the same set of
69 nondiseased and 45 diseased cases. Although the plots look somewhat different because the
VanDyke plots are based on at most five distinct ratings, whereas the simulated-data plots are
based on a continuous rating scale, in general the simulated-data ROC curves show a definite
resemblance to the VanDyke ROC curves, although this is only our subjective assessment.

4.3 Other Remarks and Examples

4.3.1 Delong error covariance estimation

For comparison, we also include in Table 1 results using the DeLong et al.'> (DeLong) error
covariance estimation method. Results for u;.0r and p,.or are omitted since they depend only
on the AUC estimation method and hence remain the same. We see from the confidence intervals
that DeLong estimates for 62, Cov,, and Cov, are positively biased and the o%5 estimate is
negatively biased. Similar results were obtained by Hillis.® Although the DeLong method is
biased, the estimates are relatively close to the true values, suggesting that results using the
DeLong or another resampling error-covariance method, such as the jackknife or bootstrap, will
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Fig. 5 Comparison of empirical ROC curves computed from VanDyke data and three MRMC
data samples that emulate the VanDyke data, generated from the RMH model in Fig. 4. TPF,
true positive fraction (or sensitivity); FPF, false positive fraction (or 1 — specificity).

typically be similar to those obtained using the unbiased method. This point is illustrated by the
example in the next section.

4.3.2 Example of computing power

Suppose our goal is to estimate the power for detecting a difference in test AUCs for a study such
as the VanDyke study, assuming that the reader-averaged empirical AUC estimates (0.897 and
0.941) are the true population values. This can be done by simulating similar data (as we did for
Table 1) and then estimating power by the proportion of samples where the null hypothesis is
rejected. The power estimates from doing this, based on the simulated samples used for Table 1,
are 0.106 for the unbiased method and 0.107 using the DeLong method, illustrating how the
choice of error covariance method makes almost no difference in our power estimates.

4.3.3 Ordinal rating scale

A limitation of the OR-to-RMH algorithm is that it applies only to continuous simulated ratings.
For example, in Sec. 4, the simulation data emulated a continuous rating for which the empirical
AUC distribution could be described by the original OR parameter values, but the VanDyke data
set that yielded the original OR estimates consisted of ratings on a five-point ordinal scale.
Although ordinal data can be simulated based on the RMH model by binning the simulated
continuous data, the mapping from the RMH model to the corresponding OR parameters when
the data are binned has not yet been developed, and hence neither has the corresponding OR-to-
RM algorithm been developed.
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We conducted a simulation study to investigate how close the original OR parameter values
might describe the distribution of the empirical AUC for ordinal ratings resulting from binning
the continuous ratings generated by the RMH model given in Fig. 4. The simulation study was
performed similar to Table 1 study, except that five-category ordinal ratings were created by
binning simulated continuous ratings. The binning thresholds corresponded to the empirical
cumulative probabilities for ratings 1....,5 for the VanDyke nondiseased cases, pooled across
readers.

Results are presented in Table 2. As expected, the two AUC (u;.0r,H2:0r) €Stimates are
less than for the continuous values, but only by a maximum of 1.44%. We also see that the
correlations are similar to those for the continuous ratings (maximum deviation is —4.63%),
with the relative values of the three even more similar: r; = r,, as was the case for the continuous
ratings, and r5 is 0.12 lower than the other two, compared to being 0.13 lower for the continuous
ratings. The maximum change in the error variance and covariance estimates was 8.07% and
there were 6.7% and —7.9% changes in 6%.og and 67,.or» respectively, which are in the same
“ballpark”™ as for the continuous ratings.

We conclude that compared with the continuous data, the empirical AUC distribution for the
binned data has a similar correlation structure, similar AUC estimates and somewhat similar
values for the error variance, error covariances, 6%.og and 67.or. Thus, this example shows
that the simulated ordinal data approximately emulate the VanDyke data set. Moreover, one
could adjust the RMH parameters to result in a closer emulation using an iterative approach,
where each iteration consists of adjustment of original OR values based on results from the
previous-iteration simulation study, computation of corresponding RMH values, and a corre-
sponding simulation study. For example, a first iteration might begin by upward adjustment
of the y.0r and p,.or values.

4.3.4 Changing the numbers of readers and cases

In our examples, thus far we have set the numbers of readers, diseased cases, and nondiseased
cases to be the same as those of the VanDyke data set. However, often a researcher will want
to investigate the performance of a reader-performance metric for a range of these numbers.

Readers. For a given set of RMH parameter values, changing the number of readers has no
effect on the corresponding OR parameters fi1.or» 42:0r> x:0r> O7r:0R> O0rs COV1s COVa,
Covs, rq, 15, and r3, as shown by the omission of the reader number in the RMH-to-OR algo-
rithm formulas in Table 6 in Appendix A.

Cases. For a given set of RMH parameter values, changing the number of cases has no effect
ON f1:0R> H2:0R> Ox:0rs OF Orp-or» @S shown by the omission of the case sample sizes in the
corresponding formulas in Table 6. In contrast, ngom Covy, Cov,, and Covsy will be affected.
Although the correlations are also affected, changes in the correlations will typically be small
[Ref. 6, p 2078].

For example, Table 3(b) shows when the case sizes are doubled (ny = 138, n; = 90) that
62.0r is reduced by 50%, the correlations are virtually unchanged (maximum of 0.6%), and
there is no change in 6%.or» 67z.0r» 41 OF ¢2- Table 3¢ shows when the case sample sizes are
switched (ny = 45, n; = 69) that 62.y is reduced by 19% and there is a small increase in the
correlations (maximum increase of 2.3%), with all other values remaining unchanged. These
results are computed using the RMH-to-OR formulas in Table 6, thus eliminating the need for
simulations.

4.3.5 Null and power simulations

The example in Sec. 4.3.2 showed how power could be easily computed for simulated data that
emulate a particular study, assuming the effect size (u;.0r — H#2:0r) 1S €qual to the observed
effect size. Other effect sizes can be investigated by adjusting J; and 6, in the RMH parameter
set accordingly, using the relationship (from Table 6):
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which implies

6; = q)_l(/"i:OR)\/l + b7 +2(0% + o7g). (22)

where @ is the cumulative standard normal distribution function.

In addition, often the researcher wants to empirically compute the type I error for testing
Hoy:pt1-0r = Ho:.0r Versus Hy:uq.or # H2:or- This can be done by creating a null RMH model
by setting 6, = &,, with the empirical type I error rate given by the proportion of simulated
samples where H is rejected. For example, in Table 3(d) we alter the RMH model given in
Fig. 4 by setting §; = J, = 8, with the value of § determined such that the corresponding
ui-or values are both equal to ugr = 0.919, the mean of the two original OR AUC values,
0.897 and 0.941, in Fig. 4. Tt follows from Eq. (22), with por = (0.897 +0.941)/2, that
5 = 2.6452, using the values for b, 6%, and 67, given in Fig. 4.

In Table 3(e), we similarly determine for a null RMH model the value of § that correspond to
tor = 0.75. In both Table 3(d) and 3(e), we see that all of the original OR parameter values are
changed, as well as the mean-to-sigma ratios, with Table 3(e) showing much more change. For
this reason, we suggest that if the researcher wants to simulate data with error correlations and
reader and reader-by-test variance components similar to those from an OR analysis of a real-
data study, but with much different AUC values, the OR-to-RMH algorithm with b_option =
mean_to_sigma should be used to determine the corresponding fry vector, as discussed in
the next section.

The R code and output for the OR-to-RMH and RMH-to-OR functions used to produce the
results in Table 3 are included in Appendix C.2.

4.3.6 Mean-to-sigma ratios and the specified and mean_to_sigma b_options

From Table 3, parts (a)-(c), we see that the mean-to-sigma ratios are ¢; = 4.56 and g, = 5.64 for
the Fig. 4 RMH model latent distributions, as well as for the models when the case sizes are
changed. However, in parts (d) and (e), we see that when the values for the RMH parameters 6,
and &, are changed, the mean-to-sigma ratios also change.

In Table 3, Pr1 is the probability that a reader’s true ROC curve is noticeably improper for
test 1. (See Appendix B.1 for how to compute Prl.) We see that this probability is relatively
small (<£0.004) for the first four models and thus is not of concern. In contrast, Pr1 = 0.326 for
null model 2, and thus we recommend not using this model for a simulation study. (Note:
although Pr2, the analogous probability for test 2, is not included in Table 3, conclusions based
on it were the same.)

In Table 4, we see for the specified and mean_to_sigma b_methods that the OR parameters
corresponding to the resulting RMH models are equal to all of the original OR values except for
the error variance and covariances (not shown).

The R code for generating Table 4 is included in Appendix C.3.

4.3.7 Troubleshooting

Table 5 provides examples where the OR-to-RMH algorithm fails to produce a solution. In each
example, the OR-to-RMH algorithm is applied to the original parameter estimate values from the
VanDyke study, given in Fig. 4, but with one value altered to result in the algorithm not working.
For example, in part (a) %. g is changed from 0.00154 (original value) to 0.154 and the algo-
rithm fails. Using Table 11 in Appendix A, we can identify which input value is causing the
problem by checking for the first parameter in the sequence xi, x,, X3, X4, b, x5, X¢, X7 that is
missing (NA), where xq,...,x; are the alternative RM parameters discussed in Appendix A.
Noting that the first parameter with a missing value is x3, the rules in Table 11 suggest reducing
the value of 6%. . Similarly, in part (b), 674.og is increased and x, is the first parameter with
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Table 5 Troubleshooting examples. For each example, one of the original parameter estimate
values from the VanDyke study, as given by for.qrig in Fig. 4, is replaced by a value that causes the
OR-to-RMH algorithm to fail. These examples show how the value responsible for the algorithm
failure can be identified from the alternative parameters x4, ..., x; and b values using the rules
given Table 11. All examples use b_method = unspecified. See Appendix C.4 for the R code
that produced these results. Note that to print the x4, ..., x; variables the option all = T must be
included in the print function (see Appendix C.4 for examples).

(a) Original value: 6%.,5 = 0.00154. Altered value: 62, o5 = 0.154. Output from applying OR-to-RMH algorithm
to altered for.org Vector is shown below. Noting that x5 is the first parameter in the sequence
X1, X2, X3, X4, b, X5, Xg, X7 that is missing (NA), the rules in Table 11 suggest reducing the value of a%:o,q.

n0 nl mul mu2 var_ R var_TR var_C var_TC var_RC var_error

69 45 NA NA NA NA NA NA NA NA
b_method mean_sigl mean_sig2 mean_sigl_025 mean_sig2_025
unspecified NA NA NA NA

x1 x2 x3 x4 b x5 x6 x7

1.264641 1.563224 NA NA NA NA NA NA

(b) Original value: 02 5.,z = 0.00028. Altered value: 62 ,.5 = 0.28. Output from applying OR-to-RMH
algorithm to altered fog.org Vector is shown below. Noting that x, is the first parameter in the sequence
X1, X2, X3, X4, b, X5, Xg, X7 that is missing (NA), the rules in Table 11 suggest reducing the value of 62 5. 5.

n0 nl mul mu2 var_R var TR var_C var_TC var_RC var_error

69 45 NA NA NA NA NA NA NA NA
b_method mean_sigl mean_sig2 mean_sigl_025 mean_sig2_025
unspecified NA NA NA NA

x1 x2 x3 x4 b x5 x6 x7

1.264641 1.563224 0.06838082 NA NA NA NA NA

(c) Original value: 62,5 = 0.000788. Altered value: 62,5 = 0.00788. Output from applying OR-to-RMH
algorithm to altered fog.orig vector is shown below. Noting that b is the first parameter in the sequence
X1, X2, X3, X4, b, X5, Xg, X7 that is missing (NA), the rules in Table 11 suggest either changing (reducing or
increasing) the value of 6245, or using b_method = specified or b_method = mean_to_sigma

n0 nl mul mu2 var_R var_TR var_C var_TC var_RC var_error

69 45 NA NA NA NA NA NA NA NA
b_method mean_sigl mean_sig2 mean_sigl_025 mean_sig2_025
unspecified NA NA NA NA

a missing value; here, Table 11 suggests reducing the value of 6%4.op. In part (c), 6%.o is
increased and b is the first parameter with a missing value; here, Table 11 suggests either chang-
ing (reducing or increasing) the value of 62, or using b_method = specified or b_method =
mean_to_sigma.

The R code for generating the results in Table 5 is provided in Appendix C.4. The values for
the xq,...,x; parameters are by default not printed unless the option all = T is included in the
print function, as illustrated in Appendix C.4. Also note in Appendix C.4 that the OR_to_RM
function suggests the remedy, based on Table 11, when the algorithm fails to produce a solution.

4.3.8 Using the algorithm with Gallas parameter estimates

For a real-data MRMC study analyzed by the Gallas method,'>?! a method has been developed
to convert the U-statistic parameters of empirical AUC and variance estimates to RM model
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parameters.>? Alternatively, it has been shown by Hillis'* that the Gallas MRMC method pro-
duces the same empirical AUC single test and difference-of-two-tests variance estimates as the
OR method, if the constraints given by Eq. (12) are not imposed on the OR estimates. As a result,
OR parameter estimates can be computed from the Gallas parameter estimates using formulas
provided in Hillis.'* Hence, RMH model parameters that correspond to real data studies can be
derived using the OR-to-RMH algorithm applied to the transformed Gallas parameter estimates.

5 Discussion

A previous problem with the original RM model and later generalized versions of it was that the
RM model parameters were expressed only in terms of the latent binormal rating distributions, as
opposed to the more familiar reader performance measure distributions. Thus, it has been diffi-
cult to set RM model parameters such that the simulated data were similar to MRMC data
encountered in practice. Assuming the constrained unequal-variance RM model,® which we have
referred to as the RMH model in this paper, Hillis® recently remedied this problem by deriving
formulas for computing the OR parameter values that describe the distribution of empirical AUC
outcomes computed from RMH simulated data. However, that paper did not provide a reverse
OR-to-RMH mapping. This paper overcomes that limitation by deriving a numerical OR-to-
RMH algorithm that computes RMH parameter values from a specified set of OR parameter
values and by providing an R function to implement the algorithm. The OR-to-RMH algorithm
and its corresponding R function make it easy to calibrate the RMH model to produce simulated
data that emulate specific real data sets with respect to the distribution of the empirical AUC
estimates.

The original RM model paper” presented several simulation structures that were supposed to
represent ROC analyses of representative real data sets, which was useful because then research-
ers could assess the performance of MRMC analysis methods using a commonly accepted set of
RM simulation structures. However, there was a mistake in some of the computations of the RM
parameters and the model was limited to equal-variance binormal ROC curves, which are not
common.®

The present approach has several limitations that we hope to remedy in future research. It is
limited to generating continuous rating data that emulate a set of inputted OR parameter values
describing the distribution of the empirical AUC estimates. Although the simulated continuous
rating data can be binned, the distribution of the empirical AUC estimates for the binned data will
not as closely emulate the inputted OR parameter values. We suggested a method to adjust the
parameter values to better fit ordinal discrete ratings through an iterative simulation approach,
but this process is time consuming and we hope to develop RMH-to-OR and OR-to-RMH algo-
rithms, similar to the ones in this paper, that are primarily designed for simulation of rating data
with a few ordinal values (e.g., 1, 2, 3, 4, or 5).

The present approach is also limited to the empirical AUC as the reader performance mea-
sure. We hope to develop an approach that allows for a semiparametric outcome, such as the
binormal AUC.

Finally, our algorithm is based on the RMH model,?> which assumes that the latent distribu-
tions are the same for both tests. Thus, another area for future research is to relax this assumption
and develop algorithms for a more general RM model, such as the unconstrained unequal
variance model,® the generalized RM model,” or some other generalization of the original RM
model.

6 Conclusions

The main contributions of this paper are the OR-to-RMH algorithm and the corresponding R
software OR_to_RMH function; these contributions make it easy to calibrate RMH model
parameters to match real-data OR parameter estimates, thus making it easy to simulate rating
data that emulate real data sets for testing MRMC analysis methods or for performing power
analysis. These contributions will allow researchers to develop sets of RMH simulation struc-
tures that are representative of a wide spectrum of MRMC studies, which can then be used to
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validate MRMC analysis methods. We expect these new RMH simulation structures will replace
the original RM model structures, which were not linked to specific real-world data sets and were
limited to equal-variance ROC curves, making the representativeness of the structures difficult
to evaluate.

7 Appendix A: Algorithm Details for Mapping OR Model Parameters
to RMH model Parameters

In this section, we derive the mapping from OR model parameters to RMH model parameters.
For the mapping, we assume the RMH model because it has the same number of parameters as
the OR model. The mapping from a more general RM model, which includes the RMH model as
a special case, to the OR model was derived by Hillis.® Modifying this more RM general model
by constraining the error variance and variance components involving diseased cases to be equal
to those involving nondiseased cases multiplied by %, b > 0, results in the RMH model. Table 6
presents the resulting analytical RMH-to-OR mapping.

To facilitate the derivation of the reverse (OR-to-RM) mapping, an alternative parameteriza-
tion for the RMH model is presented in Table 7. Table 7(a) expresses the alternative RMH param-
eters in terms of the RMH parameters, Table 7(b) presents the constraints on these parameters,
and Table 7(c) expresses the RMH model parameters in terms of the alternative RMH param-
eters. Table 8 expresses the OR parameters in terms of the alternative RMH parameters and
Table 9 expresses the alternative RMH parameters in terms of the OR parameters.

The proposed algorithm is presented in Table 10. Steps 1 to 6 replace the OR parameters in
Table 8 by specified values and then solve for the corresponding alternative RMH parameter
values. Note that these steps incorporate the alternative parameter constraints given in Table 7(b).
Using Table 7(c) mappings, step 7 computes the final RMH parameter estimates as functions of
the estimated alternative RMH parameter values.

Table 6 RMH-to-OR mapping: OR parameters expressed in terms of the RMH model parameters
for the empirical AUC.

Hi:OR = ‘P(%> i=12
ohioR = FBVN(\/— \j2—,2 )— [@(a\/—‘_) (\/—_ﬂ
0%

) - [2(%)]"} - on

pm(1+b72)+262

2
2(
Covy =34 . cnF o S Pmi 0 %
1 m1mBVN\/—\/—s v

oFp.on =527 1{FBVN(T \LFV?

o) e TRen TR o) T8 o0
where pq = FELE AN E0 | py = FELTO pa = LGS, py =0
_1y2 4 5 5 .pm(14b72)
Covp =332 41> -1 CmFBUN (\/—’— ol
*”270') +D_TC<+ *”270' yForew
= 1+b‘ ;s P2 = 1+b‘2 ;s P3= 1162 P4 = 0
5 . pm(145)
Covz =371 CmFawn (T NoZ
+0%, 2
c( ) cv ) — _C) —
where p; = 1+b2 y P2 =1 p2s ﬂsfﬁy pa=0
2 1y 4 5 & .pm(1+b72)+2(ch+0%5)
02.0R =321 2om1 CmFBUN (\/L o v o
0%, +05_ +0? 02 +02 +0?
TC(-) RC(-) C(-, e(=) TC( RC| +) &
where py =1, pp =200, py = Trot het ot 1:2,_2 2, pa=0

Notes: The numbers of nondiseased and diseased cases are denoted by ng and ny; Fgyn(., .; ») denotes the

standardized bivariate normal distribution function with correlation p; pj.or = por + 7i:0r; 6 = py + Tiy;
1. 1-

V =1+b72+2(c% +0%g); C1 = s C2 = s Ca = non‘ ; €4 = . This table is reprinted, adapted, and

revised with permission from Hillis [Ref. 6, Table 3]; notation is the same except that (aflxed + 02 ) has

fixed(+
been replaced by 1+ b2, b > 0, which results in the RMH model.
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Table 7 Alternative parameterization for RMH model parameterization.

(a) Alternative RMH parameters expressed in terms of RMH model parameters. V
is defined by V =1+ b= +2(c% + o%). Note that xe = X5 + o5¢ ),
-2
X7 :x5+o§,0(_), and 1-x4=[1+b72]/V.

Alternative RMH model parameters RMH model parameters
b = b

X; = (6:1)/VV

X2 = (62)/VV

X3 = 20%/V

X4 = [2(c% +o3R)1/V

X5 = )

Xs = ooy %

X7 = ke T o0

(b) Constraints on RMH alternative parameters. These follow from the equations
in part (a), nonnegativity of the RMH variance components and constraints
Egs. (6) and (8).

0<xy; 0<xp; 0<x; <1, i=3,...,7;, X4 >X3; Xg = Xs5; X7
> X5, Xg + X7 — X5 <1 (23)

(c) RMH parameters expressed in terms of alternative RMH parameters. Note that
in terms of the alternative parameterization, V = (1 + 1/b%)/(1 — x4).

RMH parameter Alternative RMH parameter
b = b

51 = xVV

02 = Xx2v/'V

% = BxzV

o%p = BV (x4 — X3)

() = Xs

Tl = Xg — X5

TRel) = X7 — Xs

o? = 1—(Xe + X7 — Xs5)

From Table 9, it follows that for each of the alternative parameters other than b, there can be
only one solution. It then follows from Table 8(a) that there can be only one solution for the RMH
parameters other than b. Hence, if there is more than one solution, they differ only in their b values.

Sometimes there is not an exact or approximate solution and the OR-to-RMH algorithm
returns missing values. When this happens, changing the values of the inputted OR parameters
or changing the b_method option will generally result in a solution, as discussed in Sec. 3.1.3.
The algorithm solves for the alternative RMH parameters in the following order: x1, x,, X3, x4,
b, x5, xg, and x;. Because the parameters may require estimates of preceding but not subsequent
parameters, all parameters following a parameter with no solution are assigned a missing value
by the algorithm. Table 11 describes the appropriate correction action that will produce a solution
for the OR-to-RMH algorithm, according to which is the first RMH parameter to not have a
solution.
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Table 8 RMH-to-OR mapping: OR parameters for the empirical AUC expressed in terms of the
alternative parameterization of the RMH model given in Table 7.

pi:or = ®(x;),i=1,2

6%.0r = Faun(X1, X2; X3) — [®(X1)®(X5)]

6% p.0n = B 221 {Feun (X, Xi3 X4) — [@(X))P} — 6%.0m

62 0n = 3224 D 1 CmFeUN(Xi Xi3 pm(1 — X4) + X4)
where py =1, p» :1+17, P3 :H;bz’ pa=0

Covy = Y41 CmFBun(X1, X25 pm(1 — X4) + X3)

X7

where py = X7, p2 = 7%=, Ps =g Pa=0

Covp =132 >0 1 CmFaun(Xi, Xi; pm(1 = X4))

X X
where py =X, pa =102, P3a=1,p Ps=0

Covs = 3% | CmFeun(X1, X2;pm(1 — X4))

X X
where py =Xs, pa =102, Pa=1.2 Ps=0

Notes: This table results from replacing the RMH model parameters in Table 6 by the alternative RMH model
parameters, as defined in Table 7(a). Fgyn(.,.;p) is the standardized bivariate normal distribution function
with correlation p; V =1+ b2 +2(63 + 625); €1 = -1 €p = 1% gy = 7ty g, = 1Mooy,

" nony’ nony’ nony’ nony

Table 9 Alternative RMH parameters expressed in terms of OR parameters.

x1 =@ " (u1.0R)

X3 ={0 < X3 < 1:0%.05 — Faun (X1, X2; X3) + ®(x1)D(Xp) = 0}

X4 = {0 < X4 <1:6%5.0p + 05.0r — 5 i {Faun(Xi, Xj; Xa) = [@(X))P} = 0}

b= {b >0:”§:0R —%2,2:1 anﬂ CmFeun (X, X pm(1 = X4) + X4) = 0}
where py =1, pp :143?! Pszﬁ, pa=0

X5 = {0 < X5 <1:Covz — Xty CmFeun (X1, X2; pm(1 = X4)) = 0}

X X
where py =Xs, pa=1p2, Pa=71.2 Ps=0

Xe = {0 < xg < 1:Cov, -%Z,?:1 St CmFaun(Xi, X3 pm(1 — X)) = 0}

X X
where py =X, p2 =702, Ps=1, Ps=0

X7 = {0 < x7 £1:Covy = 3y CmFaun (X1, X3 pm(1 = X4) + X3) = 0}

X X
where py = X7, p2 =1z, Ps =iz Pa=0

Notes: These results follow from the Table 8 relationships and constraints Eq. (23) in Table 7. Fgyn(., -;p) is

the standardized bivariate normal distribution function with correlation p; ¢4 :#n'; Co :',’,;;11; C3 :’,772;:;
_ 1-no—n
C4 = Mo
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Table 10 OR-to-RMH algorithm for computing parameter values for the RMH model that
correspond to specified OR parameter values.

Step 1. Solve for x; and x5:

x; = ®'(64) and x, = ©~'(6,)

Step 2. Solve for x5, using the values for x; and x, obtained in step 1:
X3 = {0 < X3 < 1:6%.05 — Faun(X1, X2; X3) + ®(X1)®(xp) = 0}

From the relationship Fgyn (X, ¥; 1) < Faun(X, ¥; p2) if p1 < po,% where F(.,;p) is the standardized
bivariate normal distribution function with correlation p, it follows that 63,5 — Feyn(X1, X2; X3) +
®(x1)®@(x2) is an increasing function of x; and hence x5 can be easily determined numerically. Numerical
solutions for x4, X5, Xg, and x; can be similarly determined in steps 3 and 6.

Step 3. Solve for x4, using the values for x4 and x, obtained in step 1:
X4 = max [XS’ {0 < X4 <1:6%g.08 + 6%5.08 = B Ly {Faun(Xi, Xi; Xa) = [@(X))P} = OH

Step 4. Solve for b using one of the following b_method options. The resulting value of b is used for the
remaining steps.

b_method = unspecified: Solve for b, using the values for x4, x5, and x4 obtained in steps 1 and 3:
b= {b >0:62, 05 —%Z,?:1 ot CmFeuN(Xi X5 pm(1 = X4) + X4) = 0}

where p1 =1, pp=17=, ps=1, r4=_0.With this option there can be 0, 1, or 2 possible

solutions for b. The algorithm returns the largest solution such that 0.001 < b < 1 if it exists; otherwise,
it returns the smallest solution such that 1 < b < 4 if it exists, or a missing value if it does not exist.

b_method = specified: Use the specified value of b.

b_method = mean_to_sigma: Solve for the value of b that corresponds to a specified mean-to-sigma ratio
and the minimum of the specified values for the expected test 1 and test 2 AUCs. (See Sec. B.2 for details.)

Step 5. Compute OR covariance estimates to be used in step 6.
(a) If b_method = unspecified was used in step 4, compute
Cov; = 1162 o, i = 1,2,3.

(b) If one of the other two methods was used in step 4, then using the computed value of b and the
inputted correlations F4, F, and 75, compute a new value for the OR error variance, given by

Z.0r = 3221 > m_1 CmFaun(Xi, Xi; pm(1 = X4) + X4), Where py =1, pp = #, Pz = #, pa=0.
Then compute

Cov; =T162.q5, 1=12,3.

Step 6. Solve for x5, xs and x;, using the following equations and the values for x4, x», X4, b and
Cov,,i =1,2,3, obtained in steps 1, 3, and 5:

X5 = {0 < x5 <1:Covs — St CmFeUN (X1, X2 pm(1 = X4)) = 0}

where py = X5, pp = %xﬂs = %,M =0

Xg = mMax [x5, {0 < xg < 1:Cov, =332 S emFeun(Xi Xis pm(1 — X4)) = 0}]
where py = Xg, p2 :Hxﬁ: P3 :117‘2,2, ps=0

X7 = max[xs, {0 <x7<1 :6&/1 =t CmFeuN(X1, X2; pm(1 — X4) + X3) = O}]
where py = X7, p :#’ P3 :%r pa=0

Step 7. Solve for the estimated RMH parameter values as functions of the estimated alternative RMH
parameter values using the mapping given in Table 7c.

Notes: d; and 6, denote specified values of the reader-averaged performance empirical AUCs for tests 1
and 2, respectively; 6245, 6%5.05, @nd 625 denote specified values of the corresponding OR parameters,
and 74, I, and 73 denote specified values for the OR correlations defined by r; = Cov;.or /02 og. These speci-
fied values can be computed from real data or conjectured. Fgyn(., -; p) is the standardized bivariate normal
distribution function with correlation p. Note that constraints Eq. (23) in Table 7 have been incorporated into the
preceding steps.
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Table 11 Troubleshooting the OR-to-RMH algorithm when missing parameter values result.

Alternative RMH When the parameter to the left is the first parameter in the column to have a missing
parameter value, try the following corrective action:

X1 NA (should be no problem)

Xo NA (should be no problem)

X3 Reduce the value of 6%

X4 Reduce the value of 624

b If using b_method = unspecified, there are two possible solutions:

(a) Change (reduce or increase) the value of f’f;oa

(b) Use one of the other two b_method options, which should always work

X5 Reduce the value of r3
Xg Reduce the value of r,
X7 Reduce the value of ry

8 Appendix B: Mean-to-Sigma Details

8.1 B.1 Computation of the Probability of a Noticeably Improper ROC Curve

For the RMH model, the mean-to-sigma ratio varies across readers. Letting g;; denote the mean-
to-sigma ratio for test i and reader j, Hillis® shows the RMH model implies that

qij NN[‘L" (b‘l — 1)2

where

_ 9
=Ty

It follows for test i that the probability that a reader’s ROC curve is noticeably improper (i.e., the
absolute value of the mean-to-sigma ratio is less than 2, as discussed in Sec. 3.2.2) is given as

Pr(lgyl<2) = o(25%) -0 Z2%).

o

where

2("%% + GZTR)
(=17

(}:

8.2 B.2 Derivation of b in Step 4 in Table 10 when b_method =
mean_to_sigma

Without loss of generality, we assume that test 1 has the lower OR AUC input; i.e., uj.or =

min(¢;.or, #2:0r)- Let @?1 ; denote the empirical AUC estimate for a randomly selected RMH

reader j reading a random RMH sample of ratings for test 1. Given the solution values of

X1,%5, X3, and x4 from steps 1 to 4 in Table 6, we want to solve for b such that E(él i) =
#1:0r and median(g;) = g, where g; is the mean-to-sigma ratio for reader j.
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Recall that for test 1, the median separation between the latent normal and abnormal dis-
tributions for test 1 across readers is equal to §;. It follows that the median mean-to-sigma ratio
is given by

and hence
5 =qb'-1). (24)

From Table 6, we can write

& (uy.0r) = 81/VV

VD7 20+ ohe)
Using the relationship 1 —x, = [1 + b™2]/V from Table 7, it follows that
g

@7 (uy:0r) = —F———— (25)
el

1—x4

Substituting expression Eq. (24) for §; into Eq. (25) yields

r(b™! =1
@~ (uy.0r) = ( ) ,
(1+57) ]
which implies
b2 —2r2p71 4 42
(@~ (u1.0r))* = BN ,
(I+b )[m}
or equivalently
1
@ o P +07) || =P 27t -2 0, 20
— Xy

Collecting terms in Eq. (26) results in a quadratic equation in b~!:

b2 (@7 o [ | - )+ 071 + 0 o

1—X4

Solving for ™! using the quadratic equation formula yields

- _bl + b%—4GIC3

b! ,
2a1

where
-1 2 l 2
a) = [q> (ﬂ1:0R)] |~
b] = 2}’2,

T
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9 Appendix C: Commands and Output for Tables from Applying
the OR_to_RMH and RMH_to_OR R Functions

This appendix includes the R commands and resulting output that were used to produce the
content of Fig. 4 and Tables 3-5. Note that both the RMH_to_OR and RMH_to_OR functions
return values for mean_to_sigl, mean_to_sig2, mean_sigl_025, and mean_sig2_025; these are
not RMH-model or OR-model parameters but rather are parameters describing the distributions
of the true reader AUC values.

9.1 C.1 R Commands and Output Corresponding to Fig. 4

9.1.1 C.1.1 Computation of RMH values by applying OR-to-RMH algorithm
to VanDyke original OR values

> VanDyke_OR_orig_values <- data.frame (n0 =69, nl =45, AUC1=0.897,
+ AUC2 = 0.941, var_R=0.00154, var_TR = 0.000208,

+ error_var = 0.000788, corrl =0.433, + corr2 =0.430, corr3 =0.299)
> RM_values <- OR_to_RMH (VanDyke_OR_orig_values)

> print (RM_values)

n0 nl deltal delta?2 var_R var_TR var_C var_TC
1 69 45 2.392224 2.957029 0.1223413 0.005180485 0.4716964 0.1222262

var_RC var_error b b_method mean_to_sigl mean_to_sig2
1 0.1091448 0.2969327 0.656081 unspecified 4.563553 5.64101

Prl_improper Pr2_improper
1 0.003896242 7.862956e-05

9.1.2 C.1.2 Computation of OR true values by applying RMH-to-OR algorithm
to RMH values

> OR_true_values <- RMH_to_OR(RM_values)
> print (OR_true_values)

n0 nl AUC1l AUC2 var_R var_TR error_var covl
1 69 45 0.897 0.941 0.00154 0.000208 0.0007880002 0.0003412041

cov2 cov3 corrl corr2 corr3d b mean_to_sigl
1 0.0003388401 0.0002356121 0.433 0.43 0.299 0.656081 4.563553

mean_to_sig2 Prl_improper Pr2_improper
1 5.64101 0.003896242 7.862956e-05

9.2 C.2 R Commands and Output Corresponding to Table 3

> # Create data frame with 5 rows, with row 1 same as RM_values in
Table 3a

> # and rows 2-5 changed slightly.

> VanDyke_OR_orig_values <- data.frame (n0 =69, nl =45, AUC1=0.897,
+ AUC2 = 0.941, var_R = 0.00154, var_TR = 0.000208, error_var =
0.000788, + corrl =0.433, corr2 =0.430, corr3 =0.299)

> RM_values <- OR_to_RMH (VanDyke_OR_orig_values)

> RM_Table4 <- RM_values[c(1,1,1,1,1),] #creates data frame with 5
rows, each = RM_values

> RM_Table34[2,c("n0","nl")] <- c(138, 90)
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> RM_Table34[3,c("n0","nl")] <- c(45, 69)

> RM_Table34[4,c("deltal", "delta2")] <- c(2.6452, 2.6452)
> RM_Table34[5,c("deltal", "delta2")] <- c(1.2759, 1.2759)
> print (RM_Table3)

n0 nl deltal delta2 var_R var_TR var_C
1 69 45 2.392224 2.957029 0.1223413 0.005180485 0.4716964
1.1 138 90 2.392224 2.957029 0.1223413 0.005180485 0.4716964
1.2 45 69 2.392224 2.957029 0.1223413 0.005180485 0.4716964
1.3 69 45 2.645200 2.645200 0.1223413 0.005180485 0.4716964
1.4 69 45 1.275900 1.275900 0.1223413 0.005180485 0.4716964
var_TC var_RC var_error b b_method mean_to_sigl
1 0.1222262 0.1091448 0.2969327 0.656081 wunspecified 4.563553
1.1 0.1222262 0.1091448 0.2969327 0.656081 unspecified 4.563553
1.2 0.1222262 0.1091448 0.2969327 0.656081 unspecified 4.563553
1.3 0.1222262 0.1091448 0.2969327 0.656081 unspecified 4.563553
1.4 0.1222262 0.1091448 0.2969327 0.656081 unspecified 4.563553
mean_to_sig2 Prl_improper Pr2_improper
1 5.64101 0.003896242 7.862956e-05
1.1 5.64101 0.003896242 7.862956e-05
1.2 5.64101 0.003896242 7.862956e-05
1.3 5.64101 0.003896242 7.862956e-05
1.4 5.64101 0.003896242 7.862956e-05
> OR_values_Table3 <- RMH_to_OR (RM_Table3)
> print (OR_values_Table3)
n0 nl AUC1 AUC2 var_R var_TR error_var
1 69 45 0.8970000 0.9410000 0.001540000 2.080000e-04 0.0007880002
1.1 138 90 0.8970000 0.9410000 0.001540000 2.080000e-04 0.0003912576
1.2 45 69 0.8970000 0.9410000 0.001540000 2.080000e-04 0.0006344427
1.3 69 45 0.9190000 0.9190000 0.001644069 7.426773e-05 0.0007890063
1.4 69 45 0.7500034 0.7500034 0.007014410 3.019443e-04 0.0023458109
covl cov2 cov3 corrl corr2
1 0.0003412041 0.0003388401 0.0002356121 0.4330000 0.4300000
1.1 0.0001703301 0.0001691406 0.0001176498 0.4353401 0.4322997
1.2 0.0002800701 0.0002778178 0.0001940871 0.4414426 0.4378927
1.3 0.0003644012 0.0003363961 0.0002513892 0.4618483 0.4263542
1.4 0.0012240655 0.0012083227 0.0009406161 0.5218091 0.5150981
corr3 b mean_to_sigl mean_to_sig2 Prl_improper
1 0.2990000 0.656081 4.563553 5.641010 0.003896242
1.1 0.3006966 0.656081 4.563553 5.641010 0.003896242
1.2 0.3059174 0.656081 4.563553 5.641010 0.003896242
1.3 0.3186150 0.656081 5.046146 5.046146 0.000783834
1.4 0.4009769 0.656081 2.433985 2.433985 0.326185605
Pr2_improper
1 7.862956e-05
1.1 7.862956e-05
1.2 7.862956e-05
1.3 7.838340e-04
1.4 3.261856e-01
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9.3 C.3 R Commands and Output Corresponding to Table 4

> VanDyke_OR_orig_values <- data.frame (n0 =69, nl =45, AUC1=0.897,
+ AUC2 = 0.941, var_R = 0.00154, var_TR = 0.000208, var_error =
0.000788,

+ corrl =0.433, corr2 =0.430, corr3 =0.299)

> Tabled4_OR1 <- VanDyke_OR_orig values[c(1l,1,1),] #creates data
frame with 3 rows,

> # each the same as VanDyke_ OR_orig_values

> Table4_OR2 <- data. frame (b_method=c ("unspecified",
"mean_to_sigma", "specified"),

+ b_input = ¢(NA,NA,1), mean_sig _input = ¢(NA,5.2,NA))

> Tabled4 OR <- cbind(Table5_OR1l, Table5 OR2)

> print ("Original OR parameter values")

[1] "Original OR parameter values"
> print (Table4_OR)

n0 nl AUC1 AUC2 var_R var_TR var_error corrl corr2 corr3
1 69 45 0.897 0.941 0.00154 0.000208 0.000788 0.433 0.43 0.299
1.1 69 45 0.897 0.941 0.00154 0.000208 0.000788* 0.433 0.43 0.299
1.2 69 45 0.897 0.941 0.00154 0.000208 0.000788* 0.433 0.43 0.299

b_method b_input mean_sig_ input
1 unspecified NA NA
1.1 mean_to_sigma NA 5.2
1.2 specified 1 NA

*Note that with mean_to_sigma = mean_to_sigma or specified it is not necessary to specify a
value for var_error, or the value can be NA

> Tabled_RMH <- OR_to_RMH (Table4_OR)
> print ("Table 4 RMH parameter values")

[1] "Table 4 RMH parameter values"
> print (Tabled_RM)

n0 nl deltal delta2 var_R var_TR var_C
1 69 45 2.392224 2.957029 0.12234134 0.005180485 0.4716964
1.1 69 45 2.303940 2.847902 0.11347812 0.004805176 0.4674676
1.2 69 45 1.855834 2.293997 0.07362882 0.003117776 0.4498198

var_TC var_RC var_error b b_method
1 0.1222262 0.1091448 0.2969327 0.6560810 unspecified
1.1 0.1220955 0.1089342 0.3015027 0.6929693 mean_to_sigma
1.2 0.1215947 0.1080172 0.3205683 1.0000000 specified

mean_to_sigl mean_to_sig2 Prl_improper Pr2_improper

1 4.563553 5.641010 0.003896242 7.862956e-05
1.1 5.200000 6.427723 0.001778344 2.748745e-05
1.2 Inf Inf 0.000000000 0.000000e+00

> Table5_true_values <- RM_to_OR (Tabled_RM)
> print ("Table 4 True OR values")

[1] "Table 4 True OR values"

> print (Table4_true_values)
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n0 nl AUC1 AUC2 var_R var_TR var_error covl
1 69 45 0.897 0.941 0.00154 0.000208 0.0007880002 0.0003412041
1.1 69 45 0.897 0.941 0.00154 0.000208 0.0007664249 0.0003318620
1.2 69 45 0.897 0.941 0.00154 0.000208 0.0006584975 0.0002851294

cov2 cov3 corrl corr2 corr3 b
1 0.0003388401 0.0002356121 0.433 0.43 0.299 0.6560810
1.1 0.0003295627 0.0002291610 0.433 0.43 0.299 0.6929693
1.2 0.0002831539 0.0001968908 0.433 0.43 0.299 1.0000000

mean_to_sigl mean_to_sig2 Prl_improper Pr2_improper

1 4.563553 5.641010 0.003896242 7.862956e-05
1.1 5.200000 6.427723 0.001778344 2.748745e-05
1.2 Inf Inf 0.000000000 0.000000e+00

9.4 C.4 R Commands and Output Corresponding to Table 5

9.4.1 C.4.1 Table 5(a) code (o—,zq:OR changed from 0.00154 to 0.154)

> VanDyke_ OR_altered_values_a <- data.frame(n0 = 69, nl = 45, AUC1
=0.897,

+AUC2=0.941, var R=0.154, var_TR=0.000208, var_error =0.000788,
+ corrl =0.433, corr2 =0.430, corr3 =0.299)

> RM_values = OR_to_RM(VanDyke_OR_altered_values_a)

Warning message: In OR_to_RM.default(n0 = 69, nl = 45, AUCI = 0.897, AUC2 = 0.941, :
Conversion failed. Try reducing the value of var_R.

> print (RM_values,all=T)

n0 nl deltal delta2 var_R var_TR var_C var_TC var_RC var_error b

1 69 45 NA NA NA NA NA NA NA NA NA
b_method mean_to_sigl mean_to_sig2 Prl_improper Pr2_improper

1 unspecified NA NA NA NA
x1 x2 x3 x4 x5 x6 x7

1 1.264641 1.563224 NA NA NA NA NA

9.4.2 C.4.2 Table 5(b) code (6% 5.o,r changed from 0.00028 to 0.28)

> VanDyke_OR_altered_values_b <- data.frame(n0 = 69, nl = 45, AUC1
=0.897,

+ AUC2 =0.941, var_ R=0.00154, var_TR=0.208, var_error =0.000788,
+ corrl =0.433, corr2 = 0.430, corr3 =0.299)

> RM_values <- OR_to_RM(VanDyke_OR_altered_values_Db)

Warning message: In OR_to_RM.default(n0 = 69, nl = 45, AUCI = 0.897, AUC2 = 0.941, :
Conversion failed. Try reducing the value of var_TR.

> print (RM_values,all=T)

n0 nl deltal delta2 wvar_R var_TR wvar_C var_TC var_RC var_error b

1 69 45 NA NA NA NA NA NA NA NA NA
b_method mean_to_sigl mean_to_sig2 Prl_improper Pr2_improper

1 unspecified NA NA NA NA
x1 x2 x3 x4 x5 x6 x7

1 1.264641 1.563224 0.06838082 NA NA NA NA
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9.4.3 C.4.3 Table 5(c) code (GEIOR changed from 0.000788 to 0.00788)

>

+
0
+

>

VanDyke_ OR_altered_values_c <- data.frame(n0 = 69, nl = 45, AUC1
0.897,
AUC2 = 0.941, var_R = 0.00154, var_TR = 0.000208, var_error =

.00788,

corrl = 0.433, corr2 =0.430, corr3 =0.299)
RM_values <- OR_to_RM(VanDyke_OR_altered_values_c)

Warning message: In OR_to_RM.default (nO = 69, nl = 45, AUCI = 0.897, AUC2 = 0.941, :
Conversion failed. If using b_method = "unspecified," there are two possible solutions: (a) Try
changing (reduce or increase) the value of var_error.( b) Try using one of the other two

b_

>

1

method options, which should always work.

print (RM_values,all=T)
n0 nl deltal delta2 wvar_R var_TR var_C var_TC var_ RC var_error b

69 45 NA NA NA NA NA NA NA NA NA
b_method mean_to_sigl mean_to_sig2 Prl_improper Pr2_improper
unspecified NA NA NA NA

x1 x2 x3 x4 x5 x6 x7

1.264641 1.563224 0.06838082 0.07127637 NA NA NA
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