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Abstract

Purpose: In ultrasound imaging, interpolation is a key step in converting scanline data to bright-
ness-mode (B-mode) images. Conventional methods, such as bilinear interpolation, do not fully
capture the spatial dependence between data points, which leads to deviations from the under-
lying probability distribution at the interpolation points.

Approach:We propose Gaussian process (GP) regression as an improved method for ultrasound
scanline interpolation. Using ultrasound scanlines acquired from two different ultrasound scan-
ners during in vivo trials, we compare the scanline conversion accuracy of three standard inter-
polation methods with that of GP regression, measuring the peak signal-to-noise ratio (PSNR)
and mean absolute error (MAE) for each method.

Results: The PSNR and MAE scores show that GP regression leads to more accurate scanline
conversion compared to the nearest neighbor, bilinear, and cubic spline interpolation methods,
for both datasets. Furthermore, limiting the interpolation window size of GP regression to 15
reduces computation time with minimal to no reduction in PSNR.

Conclusions: GP regression quantitatively leads to more accurate scanline conversion and pro-
vides uncertainty estimates at each of the interpolation points. Our windowing method reduces
the computational cost of using GP regression for scanline conversion.
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1 Introduction

Ultrasound imaging is one of the safest, cheapest, and fastest medical imaging modalities. It is
widely used in many clinical applications, such as image-guided interventions, as a diagnostic as
well as a therapeutic tool. Ultrasound image resolution and accuracy are important factors that
can impact the outcome of such procedures.

The ultrasound transducer transmits and receives radio frequency data along scanlines.
This scanline data are then processed, undergoing operations such as time gain compensation,
low-pass filtering, envelope detection, and log compression.1 Finally, the processed scanlines
(A-mode) are interpolated such that a dense two-dimensional (2D) image [brightness-mode
(B-mode)] can be displayed to the clinician.

In a probabilistic framework, the data along the scanlines can be considered as samples
drawn from an underlying probability distribution, and then the goal of the interpolation step
during scan conversion is to approximate from this underlying distribution the values of pixels
for which we do not have a measurement. Commonly used interpolation methods, such as bilin-
ear interpolation, only use local information from a few neighboring observations, which can
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lead to inaccurate estimates. Methods that take into account more observations can better infer
the underlying distribution, leading to more accurate interpolation.2

In this paper, we use Gaussian process (GP) regression to improve the accuracy of ultrasound
scanline conversion. In GP regression, a Gaussian distribution function is fit to each observation
point. A covariance function is used to compute the spatial correlation between observations.
The parameters of this function can be tuned to capture different characteristic length scales that
are specific to each dimension of the data. This adaptability is useful in ultrasound imaging, since
observations along a scanline are dense, whereas the number of scanlines is small in comparison.

1.1 Previous Work on Improving Ultrasound Image Quality

Most work on ultrasound image enhancement has focused on speckle reduction3,4 and
denoising.5 An anisotropic spatiotemporal smoothing filter was developed6 to improve scan
conversion accuracy. Spline interpolation for three-dimensional (3D) ultrasound volume com-
pounding was explored in Ref. 7. Kriging (another name for GP regression in geostatistics) was
used for 3D ultrasound reconstruction from multiple scan converted 2D slices in Ref. 8. A ran-
dom field approach was used in Ref. 9 to construct confidence maps for ultrasound images,
which are then used to improve 3D ultrasound interpolation accuracy. A comprehensive review
of interpolation for 3D ultrasound compounding can be found in Ref. 10.

Recent work has applied deep-learning methods to ultrasound imaging,11–13 such as dynamic
beam forming, adaptive spectral Doppler processing, improved noise suppression, and super-
resolution. However, these techniques are yet far from clinical adoption, since acquiring
high-quality ground truth data at massive scales required for model training and ensuring
generalization to unseen anatomy remains a challenge in developing and validating such deep-
learning-based solutions.

GP regression was previously used in other imaging modalities: single-image super-
resolution was explored14 for natural images15; explored magnetic resonance imaging (MRI)16

used the variance estimates from GP regression to improve MRI image registration. To the best
of our knowledge, GP regression has previously not been applied to ultrasound scanline
interpolation.

2 Methods

Let x represent the spatial positions of our observations y along the scanlines, and fðxÞ ¼ y be a
nonlinear function that maps x to y. The core assumption in our work is that f can be approxi-
mated by a Gaussian process, allowing us to perform scanline interpolation by querying the
process at the desired interpolation coordinates, x�.

2.1 Gaussian Process Regression

A GP is a collection of random variables, any finite number of which have a joint Gaussian
distribution.17 A GP is completely specified by its mean function,mðxÞ, and covariance function,
kðx; x 0Þ, represented as fðxÞ ∼ GPðmðxÞ; kðx; x 0ÞÞ. In practice, a zero-mean function is com-
monly used when we have limited knowledge of f.18 Observations are considered as random
variables that are drawn from a multivariate normal distribution
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where y is a vector of observed scanline intensities, y� is a vector of intensities we seek to esti-
mate at the interpolation locations, and σ2n is the observation noise. The covariance matrix is a
positive semi-definite symmetric matrix, where K ¼ kðx; xÞ is the covariance between observa-
tions, K� ¼ kðx; x�Þ is the covariance between observations and interpolation points, and K�� ¼
kðx�; x�Þ is the covariance between interpolation points. The details of the covariance function
will be discussed in Sec. 2.3.
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The intensity vector y� is estimated at the interpolation locations x� as

EQ-TARGET;temp:intralink-;e002;116;723y� ¼ KT� ðK þ σ2nIÞ−1y: (2)

Concerns regarding the computational costs of evaluating Eq. (2), namely, inverting the covari-
ance matrix, are addressed in Sec. 2.6.

The variance of the regressed values can also be computed, based on the distance between the
observations and the interpolation locations, using

EQ-TARGET;temp:intralink-;e003;116;646V½y�� ¼ K�� − KT� ðK þ σ2nIÞ−1K�: (3)

When computing Eqs. (2) and (3), we standardize the inputs to account for the zero-mean func-
tion used in Eq. (1), as well as to avoid numerical instabilities and rounding errors in floating-
point arithmetic operations.

2.2 Scanline Conversion—Parallel and Diverging Scanlines

In ultrasound transducers, the scanlines can be either parallel to each other (e.g., from a linear-
array probe), or diverging, spreading out radially from the source (e.g., from a phased-array or
curvilinear probe). With parallel scanlines, the scanline data form a grid in Cartesian coordinates,
and it is straightforward to interpolate and display them.

In contrast, with diverging scanlines, the scanline data form a grid in polar coordinates, but
the clinician is often interested in the Cartesian space representation for ease of spatial reasoning.
Figure 1 shows the arrangement of scanlines in polar and Cartesian coordinates. The desired
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Fig. 1 Illustration of a simplified ultrasound image acquisition pipeline highlighting the differences
in the scan conversion step for linear and diverging ultrasound scanlines. In vivo scanline data are
shown to demonstrate the spatial effects of scan conversion. (Top) The posterior side of a human
lower leg was scanned using an ultrasound probe with 256 parallel scanlines and 793 points along
each scanline. The gastrocnemious and soleus muscles are clearly visible in the image. The scan-
lines and the interpolation points (colored) for generating the B-mode image lie on a grid. (Bottom)
An ultrasound image of a human aortic valve was acquired using a 3D TEE probe with 64 × 48
diverging scanlines, with 412 points along each scanline. Here, we show a single 2D slice out of
the 48. The scanlines lie on a grid in polar coordinates, however the interpolation points (colored)
for generating the B-mode image lie on a grid in Cartesian coordinates. Mapping these interpo-
lation points to polar coordinates results in a non-uniform spacing between interpolation points.
Scan conversion is often performed in polar coordinates, then the interpolated points are mapped
back into Cartesian coordinates.
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interpolation points (colored) lie on the image grid in Cartesian space. It is noteworthy that with
diverging scanlines, the density of observations in Cartesian space gets sparser as the distance
from the ultrasound transducer (r) increases. In practice, when using linear interpolation meth-
ods, scan conversion for diverging scanlines is performed in polar coordinates, where the obser-
vation points lie on a grid. The interpolated intensity values are then simply displayed in
Cartesian coordinates. However, this method ignores the increasing distance between observa-
tions due to the mapping between polar and Cartesian spaces, which can be problematic espe-
cially when the beam spacing is sparse, or if the clinician wants to zoom in on regions that are
further away from the probe. To achieve better accuracy, the interpolation method should account
for the change in inter-beam distance, capturing the underlying process better. In Sec. 2.3, we
discuss how this can be achieved by selecting a different kernel length per dimension in the GP
covariance function.

2.3 Covariance Functions

The covariance function (i.e., kernel) captures the spatial dependence between observations.
There are various kernels that can be used to compute the covariance matrix, and a comprehen-
sive list can be found in Ref. 17. In this work, we consider two covariance functions: the squared
exponential (SE) and the Matérn.

Kernels usually have a parameter that controls the characteristic length scale of the depend-
ence between observations. It is possible to set a different length scale for each dimension of the
data, which is useful when dealing with a non-isometric sampling density, such as in the case of
ultrasound imaging with diverging scanlines.

2.3.1 Squared exponential kernel

The SE covariance function, also known as the radial basis function kernel, is an infinitely differ-
entiable function, which results in a smooth process. The SE covariance function with separate
length scales for each dimension is expressed as

EQ-TARGET;temp:intralink-;e004;116;380kðxi; xjjθÞ ¼ σ2 exp
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where θ is the function parameters (σ and ln), σ2 is the signal variance, ln is the characteristic
length scale for dimension n, and xi;n is the n’th component of the i’th observation.

In this work, we will denote the length scale along the scanlines as lr, and normal to the
scanlines as lθ.

2.3.2 Matérn kernel

The Matérn autocovariance function has the form
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where Γ is the gamma function, Kν is the modified Bessel function of the second kind, r is the
distance between xi and xj, l is the characteristic length scale, and ν is the smoothness parameter.
In D dimensions, the distance metric is expressed as

EQ-TARGET;temp:intralink-;e006;116;148rðxi; xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
n¼0

ðxi;n − xj;nÞ2
l2n

vuut : (6)

According to Ref. 19, the strong smoothness assumptions of the SE covariance function are
unrealistic for modeling many physical processes, and the Matérn class of covariance functions
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is recommended instead.17 The Matérn covariance function is dve − 1 times differentiable. In
general, ν is chosen to be a half-integer, which reduces Eq. (5) to an exponential multiplied by a
polynomial, and the spectral density becomes rational.19 When ν ¼ 1∕2, the Matérn covariance
function reduces to the exponential covariance function, and as ν → ∞ the kernel converges to
the SE covariance function. In the literature, ν is usually set to 3∕2 or 5∕2.17

We tested both the SE kernel and the Matérn covariance function with ν ¼ 3∕2 and 5∕2 in
our experiments. The Matérn covariance function with ν ¼ 3∕2 yielded the most accurate inter-
polation, therefore all results reported in Sec. 3 are computed using this kernel.

2.4 Ground Truth Data and Measuring Interpolation Accuracy

Quantifying improvement in image quality is a challenging task in the absence of ground truth
data. In this study, the original ultrasound scanline data are treated as the ground truth.
The interpolation methods outlined are then only applied to a subset of the scanlines, and
the resulting estimates are then compared with the excluded scanlines to measure the inter-
polation accuracy. We will refer to this as leave-N-out in Sec. 3. We compare the performance
of commonly used interpolation methods (nearest neighbor, bilinear, and cubic spline inter-
polation) against the performance of GP regression, where the mean absolute error (MAE) and
the peak signal-to-noise ratio (PSNR) between the ground truth and the interpolated images
are measured.

The MAE is defined as

EQ-TARGET;temp:intralink-;e007;116;483MAE ¼ 1

I

XI

i

jZ�
i − Ẑij; (7)

where I is the total number of pixels in the ultrasound image, Z�
i is the pixel intensities in the

ground truth image, and Ẑi is the pixel intensities in the interpolated image.
Assuming that pixel intensities are normalized to R∶½0;1�, the PSNR is defined as

EQ-TARGET;temp:intralink-;e008;116;391PSNR ¼ 10 log10
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where

EQ-TARGET;temp:intralink-;e009;116;330MSE ¼ 1
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The best interpolation method should ideally have the highest PSNR and lowest MAE and
MSE among the interpolation methods tested.

2.5 Optimizing the Kernel Length Scale

In general, the kernel parameters for a GP are determined by minimizing the log marginal
likelihood,

EQ-TARGET;temp:intralink-;e010;116;187 log pðyjXÞ ¼ −
1

2
yTðK þ σ2nIÞ−1y −
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2
log jK þ σ2nIj −

N
2

log 2π; (10)

where N is the number of observations. This is equivalent to minimizing the mean squared error
(MSE). We optimize the kernel parameters through a constrained optimization problem with the
MSE metric as the cost function, described as

EQ-TARGET;temp:intralink-;e011;116;106min
ln

1
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i − ẐGP

i Þ2 s:t: ln > 0; n ¼ α; r; (11)
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where Z�
i is the ground truth pixel intensity and ẐGP

i is the GP estimate. In our optimization
studies, we noticed that the landscape is convex, however, the gradients near the optimum are
small.

Figure 2 shows how choosing a larger than optimal length scale results in blurring, while
shorter length scales lead to striated mean-valued regions between the scanlines. Using a
sub-optimal length scale results in a decrease in the PSNR.

2.6 Reducing Computational Cost—Patched GP Regression

GP regression has OðN3Þmemory andOðN2Þ time complexity, where N is the number of obser-
vations,17 which is perhaps the main reason why it has not been widely adopted in clinical
imaging. Recent work20 has pushed exact GP training to over one million data points using
multi-GPU parallelization and methods such as linear conjugate gradients. However, medical
images can contain tens of millions of pixels or voxels and medical applications generally
require real-time performance.

The main bottleneck in GP regression is in inverting the covariance matrix in Eq. (2). The
covariance function gives a measure of the spatial dependence between observations. It is note-
worthy that with certain covariance functions (such as the ones used in this work), the covariance
function quickly decays as the distance between observation pairs increases. Therefore, outside
of a local region, the contributions from other observations can practically be ignored without a
loss in regression accuracy. We exploit this behavior to reduce the computational demand of GP
regression. The scanline data are subdivided into overlapping patches and GP regression is
evaluated separately for each patch.

Experimenting with a range of window sizes, we determined that a window size of 15 obser-
vations is optimal. Figure 3 shows the percent increase in computation time and PSNR as the
window size is increased from 5 to 29. Bold black line indicates the 15 observation window size
we selected. The colored lines represent different levels of decimation of the scanlines. This plot
is for the phased-array dataset. We can see that increasing the window size beyond 15 yields
negligible or no increase in PSNR at the cost of increased computation time. It is noteworthy that
the windowed GP regression can be parallelized on a GPU or field programmable gate arrays
(FPGA) to process the entire image in a single pass.

Furthermore, the computation time and costs can be significantly reduced by pre-computing
the matrix KT� ðK þ σ2nIÞ−1 in Eq. (2) and K�� in Eq. (3). For a given probe and imaging depth, the
observation and interpolation locations are not going to change, therefore, these matrices can be
pre-computed to avoid performing the costly Cholesky decomposition with each regression. This
reduces the computational complexity to just OðNMÞ for the matrix-vector multiplication in
Eq. (2), where M < N is the number of interpolation locations.
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Fig. 2 Incorrect choice of the kernel length can lead to reconstruction errors, such as missing data
(shorter than optimal) or blurring (longer than optimal). Ground truth shown on the right uses all 64
scanlines, whereas the reconstructions on the left use 32 (top row) and 8 (bottom row) scanlines.
When the kernel length is too short, any regression point that lies too far from an observation
quickly approaches the mean of the GP.
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3 Experiments and Results

In vivo scanline data from two different ultrasound imaging systems were acquired. A linear-
array ultrasound probe with parallel scanlines (LV8-4L65S-3, TELEMED Ltd., Vilnius,
Lithuania) was used to acquire 2D images of the lower leg of a healthy male subject at a
61-MHz imaging depth and 6-MHz frequency. The 256 scanlines with 793 observations along
each scanline are shown in Fig. 1(top). In another experiment, 3D scanline data of a human heart
was acquired at 63-mm imaging depth and 7-MHz frequency using a phased-array 3D trans-
esophageal echocardiography (TEE) probe (X7-2t transducer connected to an iE33 ultrasound
imaging system, Philips Healthcare, Andover, Massachusetts, United States). A 2D slice (out of
48) from the 3D dataset is shown in Fig. 1(bottom), containing 64 scanlines and 412 observa-
tions along each scanline. Both studies were approved by the Harvard University Institutional
Review Board (IRB) and the Boston Children’s Hospital IRB.

The observation noise σ2n for GP regression was set to 2 × 10−3 for the linear probe, and
8 × 10−3 for the phased-array probe through hyperparameter optimization. Computations used
the image processing, parallel computing, and the statistics and machine learning toolboxes in
MATLAB (The MathWorks, Inc., Natick, Massachusetts, United States).

3.1 Parallel Scanlines

Figure 4 shows the interpolated B-mode images for three different leave-N-out studies. Leftmost
column shows the ground truth data. The variance map on the right shows the normalized values
of the variance reported by GP regression from Eq. (3), where darker regions indicate smaller
variance (i.e., higher confidence). The normalization coefficient was determined across the entire
image set.

It is worthy to note that the amount of uncertainty increases as the number of scanlines is
reduced. Figure 4(a) shows the absolute PSNR scores, Fig. 4(b) shows the relative PSNR scores
(computed by subtracting the lowest scores from the rest), and Fig. 4(c) shows the MAE scores.
Nearest neighbor interpolation has the largest error as expected, and GP regression has the low-
est error and highest PSNR.

As the number of observations (scanlines) is reduced, we see a wider separation in perfor-
mance between GP regression and the other interpolation methods. Looking at the relative PSNR
scores, we see that the scores for the bilinear and spline methods have a negative slope that tend

1511 13975
17 19

21

23

25

29

Fig. 3 Results of the window size study on the phased-array scanline data, showing the percent
increase in computation time and PSNR as the window size is increased from 5 to 29. Bold black
line shows the 15 observations we selected. The colored lines represent different levels of deci-
mation of the scanlines. The computation times reported here are the mean of 10 measurements
per window size.
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toward the performance of the nearest neighbor interpolation. However, GP regression maintains
a constant separation in metrics from the baseline method (nearest neighbor).

3.2 Diverging Scanlines

Figure 5 shows the interpolated B-mode images for three different leave-N-out studies in polar
coordinates. Leftmost column shows the ground truth data. The variance map on the right shows
the normalized values of the variance reported by GP regression from Eq. (3). The variance maps
shown in Fig. 5 indicate that the amount of uncertainty increases as the number of scanlines is
reduced. The variance also increases along the scanlines due to the 1∕r scaling of the lα param-
eter. Figure 5(a) shows the absolute PSNR scores, Fig. 5(b) shows the relative PSNR scores
(computed by subtracting the lowest scores from the rest), and Fig. 5(c) shows the MAE scores.
Nearest neighbor interpolation has the largest error as expected, and GP regression has the low-
est error and highest PSNR. GP regression exhibits a larger increase in performance for diverg-
ing scanlines compared to the linear scanlines.

We observe an even wider separation (compared to parallel scanline results) in performance
between GP regression and the other interpolation methods as the number of observations (scan-
lines) is reduced. Looking at the relative PSNR scores, we see that the scores for the bilinear and
spline methods again have a negative slope that tend toward the performance of the nearest
neighbor interpolation. Differently from the parallel case, the relative PSNR score for GP regres-
sion has a peak around 13 scanlines, then rapidly decreases near the performance of bilinear
interpolation. However, we should notice that this occurs when the number of scanlines is
<15, which is the window size we determined previously when analyzing the GP kernel range
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Fig. 4 (Top) Scan converted B-mode images of the parallel scanline dataset. Leftmost column
shows the ground truth data with 256 scanlines. N indicates the number of scanlines used for
interpolation, and the next four columns show the resulting B-mode images using four interpolation
methods (nearest, bilinear, spline, and GP). Rightmost column shows the normalized variance
matrix generated during GP regression, where darker regions indicate higher confidence in the
estimates. PSNR scores are overlaid on each image. (Bottom) Interpolator performance for scan
conversion of parallel scanlines: (a) absolute PSNR scores (higher is better), (b) relative PSNR
scores (computed by subtracting the lowest scores from the rest, higher is better), and (c) MAE
scores (lower is better).
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of influence. This suggests that we simply do not have enough data points to accurately infer the
underlying distribution of the data, thus GP regression performance drops rapidly.

Figure 6 shows the interpolated B-mode images for three different leave-N-out studies in
Cartesian coordinates. Leftmost column shows the baseline data, which was generated by con-
verting the scanlines from polar coordinates to Cartesian coordinates using bilinear interpolation,
and all 64 of the available scanlines were used in the scan conversion. We also tested cubic
interpolation and GP regression to generate the baseline, which resulted in similar PSNR and
MAE metrics. The variance map on the right shows the normalized values of the variance
reported by GP regression from Eq. (3). We can see that the amount of uncertainty increases
as the number of scanlines is reduced. The variance also increases along the scanlines due to the
distance-dependent (1∕r) scaling of the lα parameter. At higher decimation rates with N ¼ 13

and N ¼ 8, the B-mode images generated by GP regression are visibly clearer compared to the
other interpolation methods. Bilinear interpolation results exhibit the laterally elongated features
that is characteristic to ultrasound images seen in commercial ultrasound systems.

3.3 Relationship between Scanline Properties and Optimal Kernel Lengths

Optimal kernel lengths were calculated by minimizing the problem defined in Eq. (11).
This function had to be minimized for each different number of scanlines used, which is a
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Fig. 5 (Top) Scan converted B-mode images of the diverging scanline dataset, presented in polar
coordinates. In the top three rows, leftmost column shows the ground truth data with 64 scanlines.
N indicates the number of scanlines used for interpolation, and the next four columns show the
resulting B-mode images using four interpolation methods (nearest, bilinear, spline, and GP).
PSNR scores are overlaid on each image. Rightmost column shows the normalized variance
matrix generated during GP regression. Bottom three rows show a detailed view of the red and
blue regions of interest. (Bottom) Interpolator performance for scan conversion of diverging scan-
lines: (a) absolute PSNR scores (higher is better), (b) relative PSNR scores (computed by sub-
tracting the lowest scores from the rest, higher is better), and (c) MAE scores (lower is better).
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computationally expensive process. However, in this particular application, since observations
lie on a fixed grid, it should be possible to determine a relationship between the grid parameters
and the optimal kernel lengths. This relationship can be then used to directly calculate the kernel
length for a given grid, without having to run an expensive optimization cycle.

In the case of parallel scanlines, the distance between observations along the scanlines,
Δr, and the distance between the scanlines, jrΔαj, are constants that are determined by the ultra-
sound probe and imaging settings.

In the case of diverging scanlines, the regression variance along the rays r should be constant,
since the distance between observations is constant. However, as the scanlines diverge,
since there are less observations per unit area, the variance across scanlines (along the α axis)
should increase. This can be achieved by scaling lα by 1∕r, which reduces the characteristic
length scale in the radial axis, thus, increasing the uncertainty of the pixels in between the
scanlines.

Inspecting of the optimized kernel lengths, we noticed the following relationships between
the kernel lengths and the physical parameters of the ultrasound scanlines:

1. For parallel scanlines,

EQ-TARGET;temp:intralink-;e012;116;318lα ¼
1ffiffiffi
3

p Δα; (12)

EQ-TARGET;temp:intralink-;e013;116;256lr ¼ kNΔr; (13)

where Δα and Δr are the (standardized) distances between observations (i.e., voxel size),
and kN is the reduction factor for leave-N-out studies. For example, if only N∕4 scanlines
are used in the interpolation, then kN ¼ 4.

2. For diverging scanlines,

EQ-TARGET;temp:intralink-;e014;116;190lαjri ¼
1ffiffiffi
3

p jrj
2ri

Δα; (14)

EQ-TARGET;temp:intralink-;e015;116;128lr ¼ kNΔr; (15)

where jrj is the overall (standardized) scanline length, and ri is the depth of the i’th obser-
vation along the scanline.

It is worthy to note that we have not yet tested if these kernel length scale relationships hold true
across different anatomy, scan depths, and ultrasound probes.

Nearest Bilinear Variance mapBaseline

32

13

8

N

26.0 29.0 29.1

21.2 23.4 24.3

18.4 19.9 20.4

Fig. 6 Scan converted B-mode images of the diverging scanline dataset, presented in Cartesian
coordinates. Leftmost column shows the baseline image with 64 scanlines. PSNR scores are
overlaid on each image. Rightmost column shows the normalized variance map generated during
GP regression.
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4 Discussion

In this paper, we investigated the use of GP regression for ultrasound scanline interpolation. We
analyzed in vivo ultrasound data acquired using both linear and phased-array probes to validate
the performance of GP regression. Using leave-N-out studies, we qualitatively and quantitatively
showed that GP regression leads to better B-mode conversion than other interpolation methods,
indicated by the higher PSNR and lower MAE scores. We greatly reduced the computation time
through patched computation of the inverse of the covariance function. In our implementation,
the average time to estimate the value of one data point was 0.3 ms. It should be possible to
enable real-time execution of GP regression through an optimized implementation. The covari-
ance matrix can also be precomputed, significantly reducing the computational complexity of the
problem. Computational time can be further reduced by relaxing the requirements on exact
regression, and taking advantage of the Kronecker structure of gridded data.21

We demonstrated that GP regression leads to better scanline conversion using clinical data.
We collected ultrasound scanline data from two distinct parts of the anatomy using a linear and
phased-array ultrasound probe. The leg dataset exhibits high-frequency texture and has a dense
set of scanlines, whereas the cardiac dataset comprises uniform patches of dark (blood) and
bright (muscle) regions and has a sparse set of scanlines. The PSNR and MAE scores for
GP regression are better than those for nearest, bilinear, and spline interpolation across both
datasets.

Using GP regression, it may be possible to use fewer scanlines while maintaining the same
image quality. This can reduce system complexity or help increase the frame rate by reducing
number of transmitted beams.

Beyond improving scan conversion accuracy, our method can be further beneficial in down-
stream tasks, such as image registration. The uncertainty estimate of GP regression can be used
to improve ultrasound image registration accuracy. This technique was successfully demon-
strated for MRI registration.16

One open question in our study is whether the kernel length relationships that we identified
hold for different anatomy and ultrasound probes. We plan to address this in our future work.

Choosing a covariance function prescribes a prior on the spatial variation of the data. Even
though the Matérn 3/2 function resulted in lower errors compared to the SE kernel, use of other
covariance functions should be investigated as well.

In this work, we applied GP regression to scanline data that was acquired after log compres-
sion to an 8-bit range. However, this compresses and distorts the dynamic range of the ultrasound
transducer. We expect performing regression prior to these post-processing steps will lead to
better scanline conversion. In combination with tone mapping techniques and high-dynamic
range ultrasound imaging methods,22 the ultrasound images presented to the clinician can be
further improved.
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