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Abstract

Purpose: The Breast Pathology Quantitative Biomarkers (BreastPathQ) Challenge was a Grand
Challenge organized jointly by the international society for optics and photonics (SPIE), the
American Association of Physicists in Medicine (AAPM), the U.S. National Cancer Institute
(NCI), and the U.S. Food and Drug Administration (FDA). The task of the BreastPathQ
Challenge was computerized estimation of tumor cellularity (TC) in breast cancer histology
images following neoadjuvant treatment.

Approach: A total of 39 teams developed, validated, and tested their TC estimation algorithms
during the challenge. The training, validation, and testing sets consisted of 2394, 185, and 1119
image patches originating from 63, 6, and 27 scanned pathology slides from 33, 4, and 18
patients, respectively. The summary performance metric used for comparing and ranking
algorithms was the average prediction probability concordance (PK) using scores from two
pathologists as the TC reference standard.

Results: Test PK performance ranged from 0.497 to 0.941 across the 100 submitted algorithms.
The submitted algorithms generally performed well in estimating TC, with high-performing
algorithms obtaining comparable results to the average interrater PK of 0.927 from the two path-
ologists providing the reference TC scores.

Conclusions: The SPIE-AAPM-NCI BreastPathQ Challenge was a success, indicating that arti-
ficial intelligence/machine learning algorithms may be able to approach human performance for
cellularity assessment and may have some utility in clinical practice for improving efficiency and
reducing reader variability. The BreastPathQQ Challenge can be accessed on the Grand Challenge
website.
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1 Introduction

Neoadjuvant treatment (NAT) of breast cancer is the administration of therapeutic agents before
surgery; it is a treatment option often used for patients with locally advanced breast disease' and
more recently is an acceptable option for operable breast cancer of certain molecular subtypes.
The administration of NAT can reduce tumor size, allowing patients to become candidates for
limited surgical resection or breast-conserving surgery rather than mastectomy.' In addition to
affecting parameters, such as histologic architecture, nuclear features, and proliferation,2
response to NAT may reduce tumor cellularity (TC), defined as the percentage area of the overall
tumor bed comprising tumor cells from invasive or in sifu carcinoma:’

Tumor bed area containing tumor cells from invasive or in situ carcinoma

TC Total area of ROI

While tumor response to NAT may or may not manifest as a reduction in tumor size, overall TC
can be markedly reduced,’ making TC an important factor in the assessment of NAT response.
TC is also an important component evaluated as part of the residual cancer burden index’ that
predicts disease recurrence and survival across all breast cancer subtypes.

In current practice, TC is manually estimated by pathologists on hematoxylin and eosin
(H&E)-stained slides, a task that is time consuming and prone to human variability. Figure 1
shows examples of various levels of TC within different regions of interest (ROIs) on an H&E
stained slide. The majority of practicing pathologists have not been trained to estimate TC as this
measurement was only proposed by Symmans et al.® in 2007, and it is currently not part of
practice guidelines for reporting on breast cancer resection specimens. That being said, the use
of TC scoring is expected to grow because the quantitative measurement of residual cancer
burden has proven effective in NAT trials. There is great potential to leverage automated image
analysis algorithms for this task to

Fig. 1 Examples of various levels of TC within different ROIs on an H&E-stained WSI slide.
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o provide reproducible and precise quantitative measurements from digital pathology (DP)
slides,

o increase throughput by automating part of the tumor burden assessment pipeline, and

o assess TC quickly and efficiently across a large population, which is advantageous in
clinical trials.

Digital analysis of pathology slides has a long history dating to the mid-1960’s’ with early
work by Mendelsohn et al.® analyzing cell morphology from digital scanning cytophotometer
images.” More recently, advances in whole slide imaging (WSI) technologies and the recent
U. S. Food and Drug Administration (FDA) clearances of the first two WSI systems for primary
diagnosis have accelerated efforts to incorporate DP into clinical practice. An important potential
benefit of WSI is the possibility of incorporating artificial intelligence/machine learning (AI/ML)
methods into the clinical workflow.!® Such methods utilize multidimensional connected net-
works that can progressively develop associations between complex histologic image data and
image annotations or patient outcomes, without the need for engineering handcrafted features
employed with more traditional machine learning approaches. The potential of AI/ML to
improve pathology workflow has been discussed in recent literature.'>"'* However, it is chal-
lenging to selectively choose the best methods for a given clinical problem because of the vast
number of techniques and out-of-the-box models available to algorithm developers, differences
between testing datasets, methods for defining a reference standard, and the metrics used for
algorithm evaluation.

Global image analysis challenges, such as Cancer Metastases in Lymph Nodes
(CAMELYON)'* and Breast Cancer Histology (BACH),'® have been instrumental in enabling
direct comparisons of a range of techniques in computerized pathology slide analysis. Public
challenges, in general, in which curated datasets are released to the public in an organized
manner, are useful tools for understanding the state of AI/ML for a task because they allow
algorithms to be compared using the same data, reference standard, and scoring methods. These
challenges can also be useful for improving our understanding of how different choices for
reference standards or a different performance metric impact AI/ML algorithm performance and
interalgorithm rankings.

This paper describes a challenge directed toward understanding automated TC assessment.
The international society for optics and photonics (SPIE), the American Association of
Physicists in Medicine (AAPM), the U.S. National Cancer Institute (NCI), and the U.S. Food
and Drug Administration (FDA) organized the Breast Pathology Quantitative Biomarkers
(BreastPathQ) Grand Challenge to facilitate the development of quantitative biomarkers for the
determination of cancer cellularity in breast cancer patients treated with NAT from WSI scans of
H&E-stained pathological slides. The Grand Challenge was open to research groups from
around the world. The purpose of this paper is to describe the BreastPathQ Challenge design
and evaluation methods and to report overall performance results from the Grand Challenge.

2 Materials and Methods

2.1 Data Acquisition

The dataset for this challenge was collected at the Sunnybrook Health Sciences Centre, Toronto,
Canada, following approval from the institutional Ethics Board.'® The histopathologic character-
istics of the 121 slides from the 64 patients participating in the original study are provided by
Peikari et al.'® The challenge dataset was a subset of slides from this original study that consisted
of 96 WSI scans acquired from tissue glass slides stained with H&E, extracted from 55 patients
with residual invasive breast cancer on resection specimens following NAT. Slides were scanned
at 20x magnification (0.5 ym/pixel) using an Aperio AT Turbo 1757 scanner (Leica Biosystems
Inc., Buffalo Grove, Illinois). Training, validation, and test sets were defined as subsets of the 96
WSI scans: 63 scans (33 patients), 6 scans (4 patients), and 27 scans (18 patients) for the training,
validation, and test data sets, respectively. Subsets were defined such that WSI scans from the
same patients resided in the same set.
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As WSI scans are difficult to annotate due to the sheer volume of data contained within each
(between 1 x 10° and 3 x 10° pixels per WSI scan), we asked a breast pathology fellow (path1)
to hand-select patches from each WSI scan, with the intention of capturing representative exam-
ples of TC ratings spanning the range between 0% and 100%. This was done using the Sedeen
Viewer!” (Pathcore, Toronto, Canada). The pathologist drew a small rectangle at the center of
the desired patch and then a plugin was used to automatically generate a rectangular ROI of
512 x 512 pixels around this point. These regions were then passed to an open-source API,
Openslide,'® to automatically extract 512 x 512 image patches from the WSI scans, which were
then saved as uncompressed TIFF image files. Resulting image files were renamed to reference
the WSI scan from which each patch originated. All identifiers were anonymized to maintain
patient confidentiality.

For each patch, a TC rating, ranging from 0% to 100%, was provided by the pathologist,
based on the recommended protocol outlined by Symmans et al.® Patches that did not contain
any tumor cells were assigned a TC rating of 0%. The training and validation sets were only
annotated by pathl, whereas the test set was annotated by both pathl and a breast pathologist
(path2). Both path1 and path2 had over 10 years of experience.'® Annotations were performed
independently, and therefore, each pathologist was unaware of the rating assigned by the other.
The distribution of pathologist manual TC ratings used as the reference standard in this challenge
for the training, validation, and test sets is given in Fig. 2. The number of patches for which
reference standard scores were provided was 2394, 185, and 1119 for training, validation, and
test sets, respectively.
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Fig. 2 Patch-based histograms of the pathologists’ reference standard scores for the (a) training,
(b) validation, and (c) test datasets. (d) Confusion matrix comparing the ratings between path1 and
path2 on the test dataset. Only path1 provided ratings for the training and validation datasets,
while both path1 and path2 provided ratings for the test dataset.
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Full WSI datasets, in addition to patches, were made available upon request on a password-
protected Amazon cloud-based platform, along with instructions for usage of high-resolution DP
WSI scans in an image analysis pipeline. Participants were able to request access to the platform
via email at the time of the challenge.

2.2 Auxiliary Cell Nuclei Dataset

In addition to image patches extracted from WSI scans, participants were also provided with
annotations of lymphocytes, malignant epithelial, and normal epithelial cell nuclei in 153
ROIs from the same dataset. These annotations were provided, and participants were permitted
to use this in the challenge in addition to the main dataset described above. These data were
provided to help developers who wanted to segment cells before calculating a TC score.'®
In the auxiliary dataset, cell nuclei were marked manually via a pen tool in Sedeen Viewer,'"
and x-y coordinates were stored in an .xml file for each ROI.

2.3 Challenge Setup

The BreastPathQ Challenge was organized with the intention of presenting findings and winners
at the BreastPathQ session at SPIE Medical Imaging 2019 (see Sec. 3.2). Participants were
allowed to register, and training data were released on October 15, 2018, for the BreastPathQ
Challenge. The validation data were released on November 28, 2018, and the test data on
December 1, 2018, ~1 month before the challenge closed on December 28, 2018. Initially hold-
ing the validation and test datasets allowed participants time to design their algorithms before
assessing their performance. Participants were tasked with assigning TC scores to individual
patches during all three phases of the challenge: training, validation, and test. For training pur-
poses, ground truth labels were provided for the training set upon initial release. Subsequently,
the ground truth labels for the validation set were released at the time the test patches were
released on December 1, 2018. Ground truth for the test set was held out during the entirety
of the challenge, only being accessible by the challenge organizers for evaluating the perfor-
mance of official submissions.

The BreastPathQ utilized an instance of the MedICI Challenge platform to conduct this
challenge.” The MedICI Challenge platform supports user and data management, communica-
tions, performance evaluation, and leaderboards, among other functions. The platform was used
in this challenge as a front-end for challenge information and rules, algorithm performance
evaluation, leaderboards, and ongoing communication among participants and organizers
through a discussion forum.

The challenge was set up to allow participants to submit patch-based TC scores during the
training and validation phases of the challenge and receive prediction probability (PK) perfor-
mance feedback scores via an automated Python script. The script initially verifies that the sub-
mitted score file is valid by checking if the submitted file is formatted correctly and that all
patches have a score. An invalid submitted score file was not considered part of the submission
limit for the participants. The same evaluation script was used for the training, validation, and
test phases. This enabled participants to validate the performance of their algorithms during
development as well as familiarize themselves with the submission process prior to the test phase
of the challenge.

The submission process involved preparing one TC score per patch in a predefined CSV
format described on the website. Participants were also required to provide a description of their
submitted method in the form of a two-page algorithm summary as part of the test phase of the
challenge. Participants who implemented deep neural networks were asked to provide a descrip-
tion of their network architecture including batch size, optimizer, and out-of-the-box models.
Each participant group was allowed up to three valid submissions to be submitted for test set
evaluation. Participants were permitted to use additional data in the algorithm development proc-
ess for pretraining, augmentation, etc., including using their own training data obtained outside
the challenge.
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2.4 Farticipants

Prior to the test submission deadline on December 28, 2018, there were a total of 317 registrants.
During each phase of the challenge, 74, 551, and 100 valid submissions were received for the
training, validation, and test phases, respectively. A “valid” submission refers to patch-level pre-
dictions successfully submitted by a registered participant. A description of the algorithm(s) was
also required as part of a valid test submission. A leaderboard was generated for each phase of
the challenge except the test phase; it was updated after each successful submission and was
made visible to all participants. The test leaderboard results were hidden from the participants.
Results of the challenge were announced at a special SPIE BreastPathQ session that took place
during a joint session with the 2019 SPIE Medical Imaging Computer Aided Diagnosis
conference and Digital Pathology conference in San Diego, California, held from February 16
to 21, 2019. During the session, the top two winners presented their algorithm and performance
in oral presentations. Other participants were also invited to present their methods in a poster
session during the conference.

A list of the 39 teams who submitted valid test set entries is provided in Appendix A with
teams being allowed to submit up to three algorithms in the test phase. Members of the organ-
izing committee, as well as students and staff from their respective organizations, were not per-
mitted to participate in the challenge due to potential conflicts of interest.

2.5 Evaluation Metric

The primary evaluation metric used for determining algorithm rankings and the winners for the
challenge was PK. Intraclass correlation analysis was also performed as a secondary analysis,
unknown to the challenge participants, to compare with the PK rankings and results. As two
pathologists provided reference standard TC scores for the test set, the PK results based on
each individual pathologist were averaged to get a final average PK for each algorithm. The
95% confidence limits [upper and lower bounds (UB and LB, respectively)] of each summary
performance score were calculated using bootstrapping (resampling with replacement) 1000
times on a per-patient basis and obtaining the 95% confidence interval using the percentile
method.

2.5.1 Prediction probability score

PK?! is a concordance metric that measures the agreement in the ranking of paired cases by two
readers or algorithms. It was used as the main evaluation metric for the challenge specifically
because it was not clear if the two pathologist TC predictions would be well calibrated due to
interpathologist variability. Concordance evaluates the ranking of cases but not the absolute
values such that calibration between readers or between a reader and algorithm is not required.
Patch ranking was deemed the most important comparison to assess since calibrating an algo-
rithm could potentially be achieved as an additional step for well-performing algorithms. PK is
defined as

p _L( C-D _ CH3Ty
“Ta2\c+D+T, T CH+D+T,’

where C is the number of concordant pairs, D is the number of discordant pairs, and T, is the
number of ties in the submitted algorithm results. PK can be defined as the probability that the
method ranks two randomly chosen cases in the same order as the reference standard. It is also a
generalization of the trapezoidal area under the receiver operating characteristics curve (AUC)
calculation. The PK was calculated by modifying SciPy’s** implementation of Kendall’s
Tau-b. SciPy’s implementation calculates the components (C, D, T,) needed for the PK
estimation such that our modification simply involved using the estimated components to
calculate PK. The Python function for calculating PK was made available to all participants
of the challenge.
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2.5.2 Intraclass correlation value

Concordance measures the similarity between the rankings of patches by two readers/
algorithms, but it does not require calibration of the algorithm and the reference TC scores.
After reviewing the various deep learning algorithm implementations, it was clear that mean
squared error (MSE), a correlation measure between an algorithm’s TC outputs and the refer-
ence standard values, was commonly used to optimize algorithm performance. Calibration
differences between the algorithm and the references do impact MSE. Since MSE was such
a common optimization metric, we added a secondary correlation analysis as part of the chal-
lenge analysis plan, namely the intraclass correlation coefficient (ICC), to better understand
the impact of the performance metric on algorithm rankings. The ICC was calculated using
two-way effects with absolute agreement [ICC (2,1) by the Shrout and Fleiss convention®],
using the “irr” package®* in R.

2.6 Patch-Based Mean Squared Error Analysis

Another post hoc analysis performed after completion of the challenge was the calculation of the
patch-based average MSE between the pathologists and all submitted algorithms to identify
which patches had the largest and the smallest errors in predicting TC. The MSE between each
pathologist and the algorithms for an individual patch was calculated as the squared sum across
all algorithms of the difference between the pathologist TC score and an individual algorithm TC
prediction. The final MSE value was then the average across the two pathologists. A higher MSE
indicated that the algorithms performed relatively poorly in predicting the cellularity for a patch,
whereas a lower MSE indicated better performance.

3 Results

3.1 Submitted Algorithms

The BreastPathQ Challenge participants represented a total of 39 unique teams from 12
countries. Almost all of the teams (38/39) used deep convolutional neural networks (CNNs)
to build their automated pipelines, with most also using well-established architectural designs
(Sec. 3.1.2). The participants also universally employed data augmentation techniques
(Sec. 3.1.1) to enhance algorithm training and performance. The remainder of this section sum-
marizes various aspects of the submitted algorithms in more detail, and a brief summary of all
submitted methods is provided in Appendix A.

3.1.1 Preprocessing/data augmentation

All participants used some form of data augmentation to increase the size of the original dataset,
with most of the participants employing random rotations, flips, and color jittering. Some
participants also opted to use the HSV (hue—saturation—value) color space in addition to,
or in combination with, the RGB (red-green-blue) color space.

3.1.2 Neural network architectures

The top 10 performing teams in the BreastPathQ Challenge used deep neural networks to gen-
erate TC scores, and they all used pretrained CNN architectures, including Inception®, ResNet,?
and DenseNet.”” Other commonly used CNN architectures included Xception,”® VGG,* and
SENet.* Other teams developed custom networks. Ensembles of deep learning-based networks
were also a common approach for achieving improved algorithm performance. The two top
performing teams incorporated squeeze-and-excitation (SE) blocks®® in their pretrained
Inception and ResNet models. SE blocks integrate into existing network architectures by learn-
ing global properties along with traditional convolutional layers. The SE block itself captures
global properties in a network by aggregating feature maps along their spatial dimensions
followed by a “self-gating mechanism.”*°
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Typically, CNN outputs were linearly mapped to scores between O and 1, and distance-based
loss functions were adopted to perform backpropagation. The most commonly used loss function
was MSE; however, other common losses such as least absolute deviation (L 1) were also used.

The majority of CNNs (except custom-made CNN architectures) used ImageNet’! pretrained
weights. Public datasets were also used for pretraining, including the BACH challenge dataset,
which includes H&E-stained breast histology microscopy and WSI scans representative of four
types of breast cancer.'” One participant also used the large 2018 data science bowl challenge
dataset of cell nuclei from various types of microscopic imaging modalities.*> Aside from CNNs,
two participants used unlabeled data in the hopes of avoiding overfitting in the task. Team
ThisShouldBeOptional pretrained a generative adversarial network (GAN)** with data from the
2014 International Conference on Pattern Recognition (ICPR) contest™ and then trained on the
BreastPathQ dataset, using the discriminator to predict TC scores. Team maxOr similarly used
the discriminator of an InceptionNet® adversarial autoencoder to regularize the feature space
prior to training for prediction of TC scores.

3.1.3 Cell segmentation

The auxiliary dataset described in Sec. 2.2 was adopted by various participants to incorporate
cell segmentation and classification as tumor versus normal in their pipelines. Because the cell
nuclei locations were given as x-y coordinates, some participants chose to sample patches cen-
tered at the provided coordinates while others simulated segmentation maps by drawing circles
around these points (e.g., Team rakhlin). There was a range of different architectures used to
perform TC score prediction from cell segmentation maps including U-Net,* fully connected
networks (FCN),”” and custom network designs.

3.1.4 Postprocessing

We found that all participants who used CNNs also employed some sort of ensemble method.
Most opted to use k-fold cross-validation to split the training set and learn individual models per
fold. Final TC scores were achieved mostly through either an averaging/maximum operation or
learning a separate regression layer that aggregated penultimate layers in each CNN. Some par-
ticipants also trained individual CNNs with different architectures in parallel and combined
results using one of the above methods.

Due to the nature of the task, and because scores were discretized through manual assess-
ment, two participants performed a combination of classification and regression. Team SCI per-
formed classification by artificially creating multiple classification categories, whereas Team
SRIBD opted to learn a label distribution automatically via label distribution learning.®
Training was then performed on a combination of two (or more via ensemble) sets of ground
truth labels.

3.2 Prediction Probability Analysis

The best performing method on the independent test set achieved an average PK of 0.941
[0.917,0.958], which was comparable to but also slightly higher than the average interrater
PK of 0.927 [0.914,0.940] for pathl and path2, who provided the reference standard TC scores
for the dataset. The PK of the best-performing algorithm failed to reach a statistically significant
difference from that of the individual pathologists’ PKs.

Figure 3(a) shows the average PK scores sorted by algorithm from highest to lowest rank with
the actual PK scores given in Table 1. Figure 4(a) shows the individual PK scores using either
path1 or path2 as the reference standard for the top 30 performing algorithms in terms of average
PK score. PK was generally higher for pathl as the reference as opposed to path2 for this set of
high-performing algorithms.

Figure 5(a) focuses on the average PK for the top 30 performers and shows a relatively small
range in performance of 0.917 to 0.941 across the 30 algorithms. The figure also indicates
the first algorithm with PK performance that is statistically significantly different from the
first- and the second-ranked algorithms at the a = 0.05 level. The first ranked algorithm
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BreastPathQ Test Performance: PK Ranks
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Fig. 3 Average scores sorted by the participants’ ranks for (a) test PK scores and (b) test ICC (2,1)
scores.

(PK = 0.941 [0.917,0.958]) was statistically superior to the fifth ranked algorithm (PK = 0.936
[0.910,0.955]) and all subsequent lower ranked algorithms. The second ranked algorithm
(PK = 0.941 [0.920,0.957]) was statistically superior to the sixth ranked algorithm (PK = 0.934
[0.906,0.953]) such that a difference of about 0.006 in PK was statistically significant for the top
performing algorithms.

3.3 Intraclass Correlation Analysis

ICC values were not an endpoint of the BreastPathQ Challenge in that these results were not used
to select the challenge winners; however, we decided to compute and report ICC values after
completion of the competition to determine the impact of algorithm ranking on the use of either a
rank-based or a calibrated endpoint. The best-performing method achieved an average ICC of
0.938 [0.913,0.956], which was higher than the average inter-rater ICC of 0.892 [0.866,0.914]
between pathl and path2.
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Table 1 Best PK scores and the corresponding ICC values achieved by each BreastPathQ
participant team, averaged between two pathologists. Some ranks (e.g., rank 5) are not listed
because a different algorithm from the same team achieved a higher rank.

PK score ICC score

Rank Average Lower Bounds Upper Bounds Average Lower Bounds Upper Bounds

1 0.941 0.917 0.958 0.934 0.908 0.954
2 0.941 0.920 0.957 0.938 0.913 0.956
3 0.939 0.911 0.958 0.936 0.906 0.957
4 0.937 0.916 0.955 0.922 0.892 0.943
6 0.934 0.906 0.953 0.928 0.896 0.952
8 0.932 0.908 0.952 0.911 0.879 0.934
9 0.932 0.908 0.951 0.931 0.901 0.954
11 0.927 0.908 0.947 0.861 0.807 0.901
14 0.926 0.902 0.942 0.895 0.852 0.924
18 0.923 0.890 0.950 0.908 0.845 0.949
20 0.923 0.904 0.938 0.904 0.874 0.930
26 0.919 0.893 0.943 0.910 0.873 0.939
27 0.919 0.890 0.943 0.885 0.835 0.918
29 0.918 0.899 0.934 0.902 0.870 0.926
30 0.917 0.891 0.939 0.900 0.859 0.930
31 0.917 0.887 0.940 0.902 0.863 0.929
33 0.916 0.895 0.933 0.906 0.877 0.928
36 0.916 0.896 0.932 0.855 0.810 0.888
37 0.915 0.897 0.932 0.904 0.880 0.926
38 0.915 0.890 0.936 0.904 0.874 0.929
40 0.913 0.893 0.928 0.906 0.874 0.929
41 0.913 0.892 0.931 0.914 0.884 0.937
45 0.912 0.892 0.929 0.903 0.872 0.928
53 0.907 0.861 0.939 0.890 0.821 0.934
55 0.904 0.872 0.930 0.895 0.836 0.931
56 0.902 0.877 0.930 0.876 0.839 0.906
57 0.900 0.879 0.921 0.888 0.851 0.919
66 0.880 0.838 0.910 0.579 0.540 0.611
67 0.879 0.856 0.900 0.858 0.810 0.902
68 0.876 0.848 0.899 0.859 0.802 0.897
70 0.870 0.843 0.889 0.828 0.779 0.865
71 0.869 0.813 0.913 0.812 0.689 0.898
72 0.868 0.826 0.902 0.837 0.759 0.886
73 0.866 0.845 0.888 0.843 0.789 0.885
75 0.864 0.837 0.889 0.824 0.780 0.871
78 0.860 0.777 0.908 0.772 0.579 0.884
80 0.847 0.790 0.900 0.801 0.709 0.872
84 0.785 0.711 0.864 0.656 0.497 0.796
87 0.497 0.476 0.517 -0.012 -0.054 0.041
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Fig. 4 Algorithm scores using the individual pathologists as the reference standard sorted by the
participants’ ranks for the top 30 performers. (a) Test PK scores by top average PK scores and
(b) test ICC (2,1) scores by top average ICC scores.

Figure 3(b) shows the average ICC scores sorted by algorithm from highest to lowest rank
with the best ICC score by participant given in Table 1. Figure 4(b) shows ICC scores using
pathl or path?2 as the reference standard for the top 30 performing algorithms in terms of average
ICC score. In this case, the ICC was generally higher for path2 as the reference compared with
pathl as the reference. This trend is the reverse of what was observed for the highest performing
PK algorithms in which comparisons with pathl typically resulted in higher PK.

Figure 5(b) focuses on the average ICC for the top 30 performers. The range in average ICC
was 0.904 to 0.938 across the 30 algorithms. The figure also shows that the first ranked ICC
algorithm (ICC = 0.938 [0.913,0.956]) was statistically superior to the 26th ranked algorithm
(ICC =0.907 [0.878,0.928]) and all subsequent lower ranked algorithms. The 2nd ranked
algorithm (ICC = 0.936 [0.906,0.957]) was statistically superior to the 29th ranked algorithm
(ICC = 0.905 [0.866,0.933]) such that a difference of about 0.031 in the ICC was statistically
significant for the top performing algorithms. This ICC difference for statistical significance was
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Fig. 5 Average performance sorted by participants’ ranks for the top 30 performers in (a) test PK
scores and (b) test ICC (2,1) scores. The horizontal lines show the first algorithm in which there is
a statistically significant difference between the two bullets.

30

substantially larger than the ~0.006 needed for PK significance. However, looking at the scatter
plot of PK scores versus ICC scores in Fig. 6, we see that the ranks in the two reference standard
approaches were fairly consistent in that high performers in PK tended to be high performers in
ICC as well.

3.4 Patch-Based Analysis

Figures 7 and 8 show patches in which the patch-based MSE were the highest and the lowest,
respectively, along with the average algorithm TC score (AvgScore). The algorithms performed
poorly for the examples shown in Fig. 7, by overestimating TC for the region of closely packed
benign acini seen in the sclerosing adenosis of Fig. 7(a) and in the patch depicting a high number
of tumors associated with inflammatory cells in Fig. 7(b). The algorithms underestimated TC for
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BreastpathQ test performance: PK vs ICC(2,1) scatter
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Fig. 6 Scatter plot between average PK scores and average ICC (2,1) scores. The solid back
curve is line with slope = 1.

the lobular carcinoma in Fig. 7(c), which is characterized by sheets of noncohesive cells with
nuclei only slightly larger than inflammatory cells that do not form tubules or solid clusters. TC
was also consistently underestimated in the apocrine carcinoma depicted in Fig. 7(d), which had
markedly abundant cytoplasm such that the surface area of the tumor cells is significantly larger
than the surface area of the nuclei.

On the other hand, the algorithms performed quite well for the patches that depicted benign,
completely normal breast lobules in the acellular stroma shown in Figs. 8(a) and 8(b) and in
acellular stroma and for malignant patches in Figs. 8(c) and 8(d) showing cohesive residual
tumor cells with high nuclear—cytoplasmic ratio encompassing the majority of the surface area.
In these cases, the tumor—stroma interface was well delineated, and the stroma contained a min-
imal number of inflammatory cells.

4 Discussion

The submitted algorithms generally performed quite well in assessing cancer cellularity for H&E
breast cancer tumor patches with the majority, 62/100 submitted algorithms, having a PK scores
greater than 0.90 on a scale of 0.0 to 1.0. The top performing algorithms had PK comparable to
path1 and path2 pathologists who had an average interrater PK of 0.927 [0.914,0.940] on the test
dataset. This indicates that a range of different deep learning approaches (e.g., ResNet50,
squeeze-excitation Resnet50, DenseNet, Xception, Inception, and ensembles of architectures)
may be able to perform similarly to pathologists in ranking pairs of slide patches in terms
of cellularity. A similar trend was observed with the ICC metric in which 50/100 algorithms
had mean ICC performance above 0.892, the average interrater ICC performance on the test
dataset. This ICC performance again suggests that a range of deep learning techniques can pro-
duce similar cellularity scores to those of the pathologists participating in this study such that
automated cancer cellularity scoring may be a reasonable AI/ML application to consider. The
value of a successful AI/ML implementation could be in streamlining the assessment of residual
cancer burden in breast and other cancers and reducing the variability in cellularity scoring com-
pared with that of pathologists. While the challenge results are encouraging, this is an early stage
study that simply indicates that some of the better performing algorithms may have merit for
further optimization and testing. Algorithm performance would need to be confirmed on a much
larger and more diverse dataset to verify both the algorithm performance and consistency with
pathologist interpretation across different patch types. Such a dataset should consist of images
acquired with different scanners and acquired at different sites so that it would be representative
of the image quality observed in clinical practice. This challenge included only images scanned
using a single WSI scanner and from a single site. In addition, our reference standard was limited
to two pathologists, and these pathologists exhibited variability in their TC scores, indicating that
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Fig. 7 Patches with the high average MSE between the pathologists and the algorithms. The
MSE, path1 TC score, path2 TC score, and average algorithm TC score for each patch (a)—(d) is
given below. (a) MSE = 0.364, path1 = 0, path2 = 0, AvgScore = 0.53 + 0.28, score range =
[0,0.98], (b) MSE = 0.247, path1 = 0.35, path2 = 0.3, AvgScore = 0.78 + 0.18, score range =
[0.10,1.00], (c) MSE =0.191, path1=0.9, path2 =1, AvgScore =0.58 +£0.23, score
range = [0,0.99], and (d) MSE = 0.093, path1 = 0.8, path2 = 0.8, AvgScore = 0.52 +0.11,
score range = [0.24,0.82].

a larger study should include a larger, more representative group of pathologist readers to better
account for reader variability.

While overall performance was good for the top performing algorithms, it was observed that
AI/ML algorithms as an entire group tended to perform well or poorly for some patches.
Figures 7 and 8 show some insight into the errors made by the algorithms. Figure 8 shows exam-
ples of “typical” appearing patches where the algorithms tend to do well, in terms of low average
MSE with the pathologists. The zero cellularity patches in Figs. 8(a) and 8(b) show the classical
appearance of normal breast tissue where epithelial cells form ducts and are surrounded by
regions of stroma, while the high cellularity patches in Figs. 8(c) and 8(d) contain dense regions
of randomly arranged malignant epithelial cells. The patches in Fig. 7 cause the most difficulty
for the submitted algorithms in general; Fig. 7(a) shows cellularity in a region derived from a
patient with adenosis. While this is benign, the dense concentration of epithelial cells seems to
have been mistaken for cancer by many of the algorithms, leading to high TC scores compared
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Fig. 8 Patches with the lowest average MSE between the pathologists and the algorithms.
The MSE, path1 TC score, path2 TC score, and average algorithm TC score for each patch
(a)-(d) is given below. (a) MSE = 0.004, path1 = 0, path2 = 0, AvgScore = 0.03 + 0.06, score
range = [0,0.30], (b) MSE = 0.006, path1 =0, path2 =0, AvgScore = 0.03+0.07, score
range = [0,0.50], (c) MSE =0.011, path1 =0.95, path2 =0.9, AvgScore = 0.90+0.10,
score range = [0.41,1.00], and (d) MSE = 0.0133, path1 = 0.9, path2 = 0.9, AvgScore = 0.88
0.11, score range = [0.40, 1.00].

with the pathologists scores. Similarly, the high concentration of tumor infiltrating lymphocytes
in Fig. 7(b) led to an overestimation of cellularity by the algorithms. In Fig. 7(c), the tumor cells
in the lobular carcinoma are distorted and noncohesive, while the effect of the NAT led to a high
cytoplasm to nuclei ratio, which caused the algorithms to underestimate cellularity in Fig. 7(d).
These figures suggest that the challenge algorithms, as a group, performed relatively well on
easier patches (Fig. 8) and struggled on more difficult patches (Fig. 7) in which pathologists
may benefit most from an AI/ML. The errors also demonstrate the degree of variability in tumor
cell properties across breast cancer cases treated with NAT and demonstrate that large and rep-
resentative datasets are needed to train and evaluate models for DP implementation. Algorithm
evaluation with large datasets can also serve to document the types of cases in which AI/ML
performs well and those types that are problematic.

Ensemble methods, which combine the output of multiple trained neural networks into
a single output, have become a common approach for challenge participants for improving
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AI/ML algorithm performance. It was the same for the BreastPathQ Challenge, in which most of
the teams used an ensemble of deep learning algorithms instead of limiting themselves to just a
single deep learning architecture and training. In general, the ensemble method had higher PK
performance than the nonensemble methods, and the top five algorithms in terms of PK all used
an ensemble of deep learning architectures. The advantage of ensembles or combinations of
algorithms leading to improved performance was also observed in the DM DREAM
Challenge, in which the ensemble method significantly improved the AUC over the best single
method from 0.858 to 0.895%° for the binary task of cancer/no cancer presence in screening
mammography. Our results indicate that ensembles of deep-learning architectures can improve
estimation performance in independent testing compared with single classifier implementations
at the cost of additional training time and validating the multiple neural networks.

Our initial choice for concordance metric was Kendall’s Tau-b (7). 75 is a common metric
for concordance® and is given as

C-D
V(IC+D+T,)«(C+D+Tpg)

Tp =

where C is the number of concordant pairs, D is the number of discordant pairs, 7' is the number
of ties in the submitted algorithm results, and T is the number of ties in the reference standard.
However, one of the participants in the challenge (David Chambers, Southwest Research
Institute, Team: dchambers) identified a problem with zp early after the initial release of the
training data. The participant found, and we confirmed through simulations, that by simply
binning continuous AI/ML algorithm outputs (e.g., binning scores to 10 equally spaced bins
between 0 and 1 instead of using a continuous estimate between 0 and 1) one could artificially
increase the number of ties 74 that an algorithm produces. Binning also impacted the number of
concordant C and discordant D pairs. Based on our simulation studies, we found that binning
decreased the number of concordant pairs C somewhat but also lead to a much larger decrease in
the number of discordant pairs D because regions having similar TC scores are more difficult to
differentiate than regions having large differences in TC in general. Binning had a relatively
small impact on the 75 denominator such that the overall effect was to increase 7 compared
with using continuous TC estimates or even smaller bin sizes. To prevent the possibility of the
challenge results being manipulated through the binning of algorithm outputs, we revised our
initial concordance endpoint to use the PK metric, which does not suffer from this shortcoming.
Increasing algorithm ties 74 by binning still impacts C and D, but the large reduction in D
reduced the PK denominator C + D + T, to a larger degree than the numerator C + % T, such
that binning algorithm estimates tend to reduce PK instead of improving it.

As described in Sec. 2.1, path1 provided all of the reference label scores for the training and
validation data. Figure 4(a) shows that test PK performance for an algorithm was consistently
larger having pathl as the reference standard compared with path2 for almost all top 30 per-
formers, although the error bars largely overlap. One possible explanation for this consistent
difference is that the participants may have been able to tune their algorithms to pathl TC scores
during the training and validation phases since pathl was the reference label for these datasets.
Although PK was not explicitly used as part of the loss function for algorithm training by any
participants, it is likely that they selectively submitted algorithms during the test phase that pro-
duced higher PK performance in the training and validation phases. It is not surprising to see
better PK performance for pathl compared with path2 since pathl was the reference labeler for
all three datasets.

Interestingly, the trend was opposite for the ICC. Figure 4(b) shows algorithm ICC perfor-
mance for both reference labelers on the test dataset. The ICC with path2 as the reference are
larger than the ICC with pathl as the reference for most of the top ICC preforming algorithms.
Participants did not optimize their algorithm for the ICC nor did they receive feedback on ICC
performance during the course of the challenge. In addition, when using path 2 as the reference,
the difference in the ICC between the algorithms and pathl was statistically significant but not
vice-versa. We hypothesize that this is likely a coincidence in our study due to having two differ-
ent truthing pathologists and no algorithm optimization toward the ICC endpoint. For PK, the
difference between the algorithms and the individual pathologists failed to reach statistical
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significance. This result suggests that ICC performance, in which calibration in the scores is
accounted for, performs differently than PK, a rank-based performance metric. Despite this,
many of the top performing PK algorithms were also among the top ICC performers. This can
be seen by studying Fig. 4 where the top three algorithms in terms of PK are also the top three in
terms of ICC. Likewise, 8 of the top 10 performing PK performers are in the top 10 performing
ICC algorithms. We conjecture that if the challenge had returned ICC performance to the par-
ticipants in the training/validation stage instead of PK, Fig. 4(b) would likely have shown better
ICC performance for pathl over path2 because the participants would have adjusted their sub-
missions to those with higher ICCs on the training and validation datasets. Therefore, we believe
it is important to consider what performance feedback is provided to participants in an AI/ML
challenge since this can impact which models are submitted. The results indicate a limitation of
the challenge of having only a single pathologist provide a reference TC score for the training
and validations datasets. This suggests that it is reasonable to collect reference information from
multiple readers for training and validation datasets in addition to the test data, especially for
estimation tasks in which reader variability is expected to be high. This could reduce overfitting
results to a single truther and potentially produce more generalizable algorithm performance.
The advantage of utilizing multiple truthers for all data in a challenge still needs to be weighed
against the time and costs associated with collecting this additional information.

5 Conclusion

The SPIE-AAPM-NCI BreastPathQ Challenge showed that better performing AI/ML algorithms
submitted as part of the challenge were able to approach the performance of the truthing patholo-
gist for cellularity assessment and that they may have utility in clinical practice by improving
efficiency and reducing reader variability if they can be validated on larger, clinically relevant
datasets. The BreastPathQ Challenge was successful because experts in multiple fields worked
together on the Organizing Committee. This enabled participants to quickly understand the
basics of the task, download the data, develop their algorithms, and receive efficient feedback
during the training and validation phases. The BreastPathQQ Challenge information is accessible
on the Grand Challenge website.*! The data used in the challenge including the WSI scans and
additional clinical information related to each patient can be found on the cancer imaging archive
(TCIA).#?

6 Appendix A: PK Performance by Team

Table of the best average PK results and corresponding ICC scores for each participating team
along with the teams’ members, affiliations, and a brief description of their submitted algorithm.

7 Appendix B: BreastPathQ Challenge Group Members

List of the BreastPathQ Challenge Group members considered as co-authors on this manuscript.

Disclosures

Reported disclosures for individual members of the BreastPathQ Challenge Group are listed in
Appendix B.
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sources, or their use in connection with material reported herein is not to be construed as either an
actual or implied endorsement of such products by the Department of Health and Human

Services.
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