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Abstract

Purpose: Computer-aided detection (CAD) alerts radiologists to findings potentially associated
with breast cancer but is notorious for creating false-positive marks. Although a previous paper
found that radiologists took more time to interpret mammograms with more CAD marks, our
impression was that this was not true in actual interpretation. We hypothesized that radiologists
would selectively disregard these marks when present in larger numbers.

Approach:We performed a retrospective review of bilateral digital screening mammograms. We
use a mixed linear regression model to assess the relationship between number of CAD marks
and ln (interpretation time) after adjustment for covariates. Both readers and mammograms were
treated as random sampling units.

Results: Ten radiologists, with median experience after residency of 12.5 years (range 6 to 24)
interpreted 1832 mammograms. After accounting for number of images, Breast Imaging
Reporting and Data System category, and breast density, the number of CAD marks was pos-
itively associated with longer interpretation time, with each additional CAD mark proportionally
increasing median interpretation time by 4.35% for a typical reader.

Conclusions:We found no support for our hypothesis that radiologists will selectively disregard
CAD marks when they are present in larger numbers.
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1 Introduction

Mammography is the gold standard for breast cancer screening. However, it is not without short-
comings as a screening tool. Approximately 25% to 33% of visible cancers may be overlooked
during a mammographic interpretation because of overlying dense breast tissue, variability in
reader experience, and reader fatigue.1 To help prevent cancers from being overlooked, com-
puter-aided detection (CAD) programs review mammograms using software designed to alert
the radiologist to findings potentially associated with breast cancer, such as microcalcifications,
masses, and regions of architectural distortion. CAD is notorious for creating a large number of
false-positive marks.2–4 Its overall value in screening has been questioned, with a study in 2011
finding that in a large cohort of women undergoing screening mammography, the use of CAD
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decreased specificity for breast cancer detection but did not have a statistically significant
improvement in detection rate or decrease in breast cancer stage, size, or nodal status.5 A later
study by an overlapping group of authors of another large cohort of patients showed CAD to
increase detection of ductal carcinoma in situ and to allow detection of invasive breast cancer at
earlier stages.6 Other studies have also shown that CAD may provide some improvement in
cancer detection at the expense of decreased specificity.7,8 Despite the mixed reviews, CAD
remains in frequent use in the United States. A survey of 400 mammography sites in 2007 was
followed up by surveys of the same sites in 2011 and 2016, and each time the percentage of
sites using CAD for screening mammography was just over 90%, ranging from 90.2% in 2011 to
92.3% in 2016.9 CAD systems are also now being developed for use with digital tomosynthe-
sis,10 so even though conventional mammography is becoming less frequent as a stand-alone
study, information on how humans interact with CAD systems remains relevant.

The developers of ImageChecker (R2 Technology, Sunnyvale, California), a commercially
available CAD system, suggested that review of CAD images would not slow the radiologist
down;11 however, common sense would argue that review of CAD images will take a few sec-
onds, even if CAD has marked no suspicious areas. Tchou et al.12 determined that review of
CAD images caused a 19% increase in the interpretation time of digital screening mammograms
compared with the interpretation time without CAD. Khoo et al.1 found that the time per reader
per case was 25 s for reading film-screen screening mammograms without CAD and 45 s for
reading with CAD. In both the Tchou and Khoo studies, the absolute time required to review the
CAD image was nearly identical. If radiologists consider each CAD mark individually, one
would expect the time required to interpret a mammogram to increase with the number of marks.
Tchou et al. found that as the number of calcification or mass marks increased, so did the time
taken to review them. The number of marks for masses with calcifications did not significantly
affect reading times (p ¼ 0.26), perhaps because there were few such marks.12

Despite the findings of Tchou et al., our clinical impression has been that increased numbers
of CAD marks did not lengthen the time taken by radiologists to read mammograms. In other
words, we suspected that in actual clinical practice, interpretation time may not change with
increasing numbers of CAD marks. This suspicion, which we developed based on our own
thoughts about how we interpreted images, has also been voiced, albeit indirectly, by Fenton,13

who suggested that experienced radiologists may simply ignore CAD marks. Therefore, we
evaluated how the time spent interpreting digital screening mammography varied with the
number of CAD marks. A preliminary evaluation of the data presented here suggested that our
suspicion was correct that time spent reviewing the images did not increase as the number of
CAD marks increased.14 However, further statistical evaluation revealed a different conclusion.
Therefore, we present our data here along with additional statistical evaluation.

2 Materials and Methods

Under institutional review board approval, we performed a retrospective review of digital screen-
ing mammograms obtained at our institution between January 1, 2011 and February 28, 2014.
Patient consent was waived. We included only patients without breast implants undergoing
bilateral examinations. We used only reports issued by attending radiologists who agreed to be
included. The screening mammograms were viewed on Selenia digital mammography systems
(Hologic, Bedford, Massachusetts). CAD images were generated using R2 ImageChecker,
version 8.3.17 (R2 Technology, Sunnyvale, California), set to the manufacturer default sensi-
tivity setting, with the microcalcifications algorithm threshold set to 2 (Algorithm v8 – increased
sensitivity) and the mass algorithm threshold set to 1 (Algorithm v8 – balanced sensitivity).
The Selenia units and ImageChecker were installed for screening mammography in 2007.
The ImageChecker system was changed in May 2012 to Cenova Software version 1.5. This
changed the appearance of the CAD image to a more processed version, but the underlying
algorithms controlling the placement of CAD marks did not change. Mammograms were viewed
on iSite workstations, version 3.5 (Philips Healthcare, Andover, Massachusetts/Amsterdam, The
Netherlands). Radiologists entered reports on a computer-based mammography information
management system (MagView, version 6.0; MagView, Burtonsville, Maryland). The worksta-
tions included two primary gray-scale diagnostic monitors (5MP Dome C5-I and E5-I; NDSsi,
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San Jose, California) for viewing of digital mammograms and additional color monitors for
selection of comparison studies, image navigation, and supporting documents that the interpret-
ing radiologist may have wished to consult. Workstations were equipped with display calibration
software (CXtra; Dome, Waltham, Massachusetts) conforming to the part 3.14 standard of the
Digital Imaging and Communications in Medicine.

We obtained completion time of each report, identity of the reader, breast density, and Breast
Imaging Reporting and Data System (BI-RADS) category from the MagView database. Breast
density was recorded according to the four usual types from the BI-RADS lexicon: (1) the
breasts are almost entirely fatty (fatty); (2) there are scattered areas of fibroglandular density
(fibroglandular); (3) the breasts are heterogeneously dense, which may obscure small masses
(heterogeneous); and (4) the breasts are extremely dense, which lowers the sensitivity of mam-
mography (extremely).

The number of CAD marks and the number of views were obtained from inspection of the
images. Radiologists entered and signed reports sequentially as each study was interpreted. We
defined interpretation time to be the time period between signing off of sequential reports,
calculated to the nearest second. We excluded the first report of each day for each radiologist,
to avoid including overnight hours between workdays that would generate extremely long ap-
parent interpretation times. We did not exclude other specific interruptions in workflow, but did
exclude outliers (defined below) from our analysis, as we believed them to be results of work
interruptions. We also confined consideration to reports generated over the weekend to decrease
the likelihood of interruptions and the involvement of trainees in interpretation. During weekend
reading sessions, the radiologist is typically alone with no one else to initiate interruptions, and
the radiologist can leave as soon as the screens have been read, which provides motivation to
keep self-initiated interruptions to a minimum. Weekend screening mammography interpretation
is considered to start at 3:00 p.m. on Friday afternoons and to continue through Sunday. The
number of CAD marks and the number of mammogram images were determined by visual
inspection of the images. Two investigators independently collected these data, one of whom
correlated the results and looked at the data for the second time to resolve any discrepancies.

We calculated interpretation times before outliers or any studies, such as unilateral mammo-
grams, were excluded. We transformed interpretation time to the logarithmic scale to achieve
approximately normal linear regression model errors with constant variance. For each radiolo-
gist, transformed interpretation times that exceeded the radiologist’s median transformed reading
time by more than 2.5σ̂, where σ̂ is the robust standard deviation estimate defined as the reader’s
interquartile range divided by 1.349, were considered to be outliers and were excluded from
analyses. For a normal distribution, σ̂ approximates the standard deviation, but because it is
computed only from the middle 50% of the data distribution, it has the advantage of not being
influenced by outliers, like the conventional standard deviation estimate.

2.1 Statistical Analysis

Our primary goal was to determine the relationship between the number of CAD marks (CAD)
and interpretation time (time) after adjustment for covariates. A linear mixed model was esti-
mated that regressed log-transformed time on CAD, number of images, BI-RADS category, and
breast density. We used the log-transformed time as the dependent variable in order that the error
terms would be approximately normal. We treated both mammogram and reader as random sam-
pling units so that conclusions would generalize to their respective populations. We did not
attempt to account for correlation between mammograms from the same patient, and hence con-
clusions are limited to mammograms from the study patients. To account for within-reader cor-
relation, the CAD coefficient and model intercept were allowed to vary across readers by treating
them as random effects. (The term “mixed” indicates both random and fixed effects are in the
model.) Using this model we estimated, for a typical reader (see Sec. 5 for definition), the per-
centage change in median reading time corresponding to a unit increase in CAD, i.e. an addi-
tional CAD mark as well as an interval (95% range) that contains the percentage change for 95%
of the reader population for given values of the other covariates. We also estimated the percent-
age change in median reading time corresponding to a unit increase in each of the other predictor
variables, which we assumed to be the same across readers.
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The precise statistical specification of the mixed linear regression model, as well as formulas
for deriving the percentage change for a typical reader and the 95% range across readers, is
provided in Sec. 5. We used the SAS procedure MIXED15 to estimate the mixed regression
model and to assess the usefulness of each predictor. All tests were two-sided, with p values
<0.05 considered statistically significant.

3 Results

Ten radiologists participated. All were certified by the American Board of Radiology and prac-
tice screening mammography. The median experience after residency for these radiologists was
12.5 years (range 6 to 24 years). These radiologists interpreted 1945 eligible screening mammo-
grams taken from a total of 1829 patients: 1719 patients contributed a single mammogram,
104 patients contributed 2 mammograms, and 6 patients contributed 3 mammograms. Each radi-
ologist reviewed an independent set of mammograms; thus, no two readers reviewed the same
mammogram. After excluding outliers, 1834 mammograms remained. Two more mammograms
that were the only mammograms having a BI-RADS score of 3 were also dropped, leaving a total
of 1832 mammograms that were used for the analysis.

As shown in Fig. 1, for the 1832 mammographic studies, the number of images obtained for
each mammography study ranged from 4 to 12 (median = 4), with 1038 (56.7%) having four
images, which consisted of the standard two mediolateral oblique and two craniocaudal images.
Two hundred and ninety-three studies (16.0%) had five images. Only two studies (0.11%) had
12 images. The number of CAD marks per study ranged from 0 to 17 (median = 2). As shown in
Fig. 2, the number of CAD marks per study was positively skewed. Four hundred and six of

Fig. 1 Number of mammographic studies by the total number of images obtained per study.

Fig. 2 Number of mammographic studies by the number of CAD marks generated.
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the 1832 studies had no CAD marks (22.2%), and there were relatively few studies with very
high numbers of CAD marks, although one study had 17 CAD marks. A summary of the number
of CAD marks and images is available in Table 1.

We examined how interpretation time and the covariates related to the number of CAD
marks. Table 2 presents the mixed linear regression results. From Table 2, we see that
CAD, number of images, and BI-RADS are all statistically significant predictors of ln(time)
(all p ≤ 0.0001), but density did not attain statistical significance (p ¼ 0.58). Table 2 presents
corresponding coefficient estimates for CAD and number of images, as well as for each level of
the categorical predictors BI-RADS and density. Because breast density did not attain statistical
significance, to simplify interpretation of the results, we have omitted corresponding coefficient
estimates from Table 2.

From Table 2, we see that predicted ln(time) increases by 0.0426 for each unit increase in
CAD, i.e., for each additional CAD mark. A more natural interpretation is that, for a typical
reader, interpretation time increases proportionally by 4.35% (CI = 2.80%, 5.92%) for each
additional CAD mark, as shown in the last column. In addition, we estimate that for 95% of
the reader population, the increase in interpretation time ranges between 1.74% and 7.03%
(not shown in Table 1). (Section 5 demonstrates how these proportional-change results are
computed.) By comparison, the increase is 8.71% in interpretation time for each additional
image. BI-RADS codes 0 and 1 resulted in an increase of 21.1% and a decrease of 18.0%,
respectively, compared to the interpretation time for BI-RADS code 2, the reference code.

Table 1 Statistical summary of numbers of images, CAD marks, triangles, and asterisks per
mammographic study.

Statistic Images CAD marks Triangles Asterisks

Mean 4.82 2.8 1.37 1.39

Minimum 4 0 0 0

25th Percentile 4 1 0 0

Median 4 2 0 1

75th Percentile 6 4 2 2

Maximum 12 17 13 12

On the CAD images, triangles are marks denoting possible malignant microcalcifications, and asterisks denote
possible malignant masses. Total sample size is n ¼ 1832 studies.

Table 2 Linear mixed model results.

Predictor variable Coefficient [95% CI] SE p value df % Change in time [95% CI]

Number of CAD marks 0.0426 [0.028, 0.058] 0.0066 0.0001 1 4.35 [2.80, 5.92]

Number of images 0.0835 [0.060, 0.108] 0.0122 <0.0001 1 8.71 [6.13, 11.35]

BI-RADS (ref = 2) <0.0001 2

(level = 0) 0.1920 [0.110, 0.276] 0.0419 <0.0001 1 21.1 [11.6, 31.5]

(level = 1) −0.1980 ½−0.260;−0.136� 0.0317 <0.0001 1 −18.0 ½−22.9;−12.7�

Breast density 0.5800 3

The dependent variable is ln(interpretation time). For the number of CAD marks and number of images, the
percentage change in time is for each unit increase in the number of CAD marks or number of images.
Coefficient estimates are not shown unless the predictor variable was statistically significant. CI = confidence
interval; BI-RADS = categorical BI-RADS score (0, 1, or 2), with 2 as the reference level; Density = categorical
density score (“extremely,” “heterogeneous,” “fibroglandular,” or “fatty”); df = degrees of freedom; df = 1 indi-
cates a single coefficient test; df ≥ 2 indicates a global test that tests if there are any differences among (df + 1)
categorical variable level effects; SE = standard error.
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We also tested for a nonlinear (quadratic) effect of CAD, as well as for interactions between
CAD and the covariates, none of which attained statistical significance. A plot of the conditional
studentized residuals versus the predicted values [Fig. 3(a)] suggested fairly constant variance of
the error terms and no obvious model misspecification. (A studentized residual is equal to the
residual divided by an estimate of its standard deviation.) A plot of the conditional studentized
residuals versus normal quantiles [Fig. 3(c)] and a histogram of the conditional studentized
[Fig. 3(b)] suggested that the error terms were approximately normally distributed.

4 Discussion

We studied the time taken by radiologists during actual clinical interpretation of screening mam-
mograms and modeled the logarithmic transformation of interpretation time as a linear function
of the number of CAD marks on the images, number of images, BI-RADS score, and density.
We found that as the number of CAD marks increased, the predicted interpretation time also
increased, increasing proportionally by 4.35% for each additional CADmark for a typical reader,
assuming that number of images, BI-RADS score, and density remain constant. For example,
our findings imply that for a typical reader, if the median interpretation time for mammograms
without any CAD marks is 120 s, then for mammograms with one CAD mark the median
interpretation time would be 125.2 s. This result did not support our subjective impression that
additional CAD marks were not associated with additional interpretation time. Although we
cannot say with certainty that the extra time taken for mammograms with CAD marks was
actually dedicated to studying the CAD marks, our findings also do not support a suggestion
by Fenton13 that many radiologists ignore CAD output.

Rather, our findings support those by Khoo et al.1 and Tchou et al.12 that more CAD marks
require more interpretation time. Our study also complements the study by Tchou as it was
performed prospectively, with an observer watching interpretation and recording time taken for
interpretation without CAD and then the time needed to incorporate the CAD results. The study
design in the paper by Tchou et al. may have influenced the outcome by making the radiologists
self-conscious as well as by adding a step to their workflow. Our study was retrospective and

Fig. 3 Conditional studentized residual plots. (a) Residual versus predicted. (b) Histogram of
residuals. (c) Residuals versus normal quantiles.

Schwartz et al.: Interpretation time for screening mammography as a function. . .

Journal of Medical Imaging 022408-6 Mar∕Apr 2020 • Vol. 7(2)



therefore there was no possibility that the research itself would influence the behavior of the
radiologists.

We note that the failure of an earlier analysis14 of the same data to find a significant asso-
ciation between interpretation time and number of CAD marks can be attributed to low power
attributable to only testing individually if there was a significant association for each reader,
rather than fitting a model based on the data from all of the readers, as was done in this study.

Our study had some limitations. There were relatively few studies with a large number of
CADmarks. Therefore, our results may be more reliable for differences in reading times between
studies with small or moderate numbers of marks rather than large numbers. As this study was
retrospective, we could not deliberately or specifically exclude the studies with common, short
workflow interruptions, e.g., brief phone calls. These interruptions, however, were likely random
with respect to the number of CAD marks, and many may have been excluded as outliers. Our
results may also have been different if we had included interpretations performed during the
workweek. This would have increased the number of studies available for inclusion but would
have caused more variation in apparent interpretation time due to work-related consultations and
interruptions. For example, during the workweek, our radiologists often read screening mammo-
grams in between other examinations, such as ultrasound or between procedures. These studies
are not entered into MagView and therefore the time taken with such studies would have been
spuriously added to the apparent interpretation time of the next screening study. On the week-
ends, however, on-call radiologists come in specifically to interpret screening mammograms
performed Friday afternoon, and the radiologists will not have other types of imaging to inter-
pret. For these reasons, we believed that it was best to confine our consideration to weekend
interpretations. We studied interpretation times of a specific group of radiologists using one
specific type of CAD program and may have had different results had we studied others.
Finally, we note that although conclusions from this study generalize to both the reader and
mammogram populations, the mammogram population is restricted to mammograms generated
from subjects in this study. However, we do not consider this to be an important limitation
because (1) our interest was primarily in reader behavior and (2) the number of subjects was
relatively large.

In summary, our data suggest that radiologists do spend extra time evaluating studies with
more CAD marks. Therefore, we found no support for suggestions that CAD marks are ignored.
Our findings also support the commonsense assumption that a reduction in the number of
false positive CAD marks would be helpful to improving workflow in screening mammography.
This supports the efforts being made to use artificial intelligence to reduce the number of
false-positive marks.16

5 Appendix A: Statistical Details, Results, and Examples

5.1 Specification of the Mixed Linear Regression Model

In this section we describe in statistical detail the mixed regression model used to estimate the
effect of CAD on the logarithm of interpretation time. In this model the intercept and CAD
coefficient are allowed to vary across readers to account for within-reader correlation.

Each reader reads a different set of mammograms. For reader i reading the j’th mammogram
(among those assigned to reader i), the model is given by

EQ-TARGET;temp:intralink-;e001;116;189

lnðtimeijÞ ¼ β0i þ β1iðCADijÞ þ β2ðimagesij − 4Þ þ β3ðBI − RADSij ¼ 0Þ
þ β4ðBI − RADSij ¼ 1Þ þ β5ðdensityij ¼ “Extremely”Þ
þ β6ðdensityij ¼ “Heterogeneous”Þ þ β7ðdensityij ¼ “Fibroglandular”Þ þ εij; (1)

where “ln” is the natural logarithmic function; β0i is the intercept term for reader i; CADij is the
number of CADmarks with corresponding reader-specific coefficient β1i; imagesij is the number
of images; BI-RADSij is the BIRADS category where, e.g., ðBI-RADSij ¼ 0Þ is an indicator
variable that takes the value 1 if BI-RADSij ¼ 0 and otherwise is 0; densityij is the breast density
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category; and εij is the error term. We assume that the ðβ0i; β1iÞ pairs have a bivariate normal
distribution across readers with means β0 and β1, variances σ2β0i and σ2β1i , and covariance σβ0β1 ,
and we assume that the εij are independent and normally distributed with zero mean and variance
σ2ε . Note that only the intercept and CAD coefficient vary across readers; i.e., for the other
independent variables, the corresponding regression coefficients are assumed constant across
readers. Because all mammograms had at least four images, the variable ðimagesij − 4Þ is used
to simplify the interpretation of the intercept. Note that Eq. (1) treats BI-RADS category 2 and
breast density category “fatty” as the reference levels by omitting them.

5.2 Regression Model Estimates and Diagnostic Plots

The fitted regression model corresponding to Eq. (1) is given by
EQ-TARGET;temp:intralink-;sec5.2;116;585

lnðtimeÞ ¼ 5.108þ 0.043ðCADÞ þ 0.084ðimages − 4Þ þ 0.192ðBI − RADS ¼ 0Þ
− 0.198ðBI − RADS ¼ 1Þ þ 0.063ðdensity ¼ “Extremely”Þ
þ 0.056ðdensity ¼ “Heterogeneous”Þ þ 0.084ðdensity ¼ “Fibroglandular”Þ.

5.3 Computation and Estimation of Proportional Change in Interpretation
Time and 95% Range

Result 1: Proportional change. Under the assumptions of the mixed linear regression model
described in Eq. (1), it follows that each exponentiated slope coefficient minus 1 is the propor-
tional change in the median interpretation time attributed to an increase of one unit in the
corresponding independent variable with the other independent variables remaining constant.
For the CAD predictor, this result is for a typical reader. (Reader i is defined as a typical reader
if its CAD coefficient is equal to the mean CAD coefficient, i.e., if β1i ¼ β1.)
Proof. We first show the result for a one unit change in CAD. Consider a typical reader ðβ1i ¼
β1Þ and let the vectors Z and B denote the other independent variables (including intercept) and
corresponding parameters, respectively. It follows for the typical reader, conditional on Z ¼ z,
that the expected value of the log-transformed time is given by E½lnðtimeÞ� ¼ β1ðCADÞ þ B 0z.
Because the model assumption of normal error terms implies that lnðtimeÞ is normally
distributed, conditional on the covariates, it follows that β1ðCADÞ þ B 0z is also the median
lnðtimeÞ, and hence exp½β1ðCADÞ þ B 0z� is the median of the nontransformed interpretation
time. Thus, the ratio of the median interpretation times corresponding to an increase of one unit
in CAD is given by

EQ-TARGET;temp:intralink-;st1;116;288

exp½β1ðCADþ 1Þ þ B 0z�
exp½β1ðCADÞ þ B 0z� ¼ expðβ1Þ

and the proportional change by

EQ-TARGET;temp:intralink-;e002;116;231 expðβ1Þ − 1: (2)

Note that this result does not depend on either the number of CAD marks or the values of the
other covariates. The percentage change is 100½expðβ1Þ − 1�. The proof for the other covariates is
similar, except that the result applies to all of the readers, not just a typical reader.

5.3.1 Example

The estimate for β1 (see Table 2) is 0.04256. Plugging this value into Eq. (2) results in

EQ-TARGET;temp:intralink-;e003;116;107 expð0.04257Þ − 1 ¼ 0.04349: (3)
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Thus, we estimate that there is a 4.34% increase in the median interpretation time with each
additional CAD mark for a typical reader. Lower and upper 95% confidence interval bounds
for the proportional-change result from replacing β1 in Eq. (2) by the 95% confidence interval
upper and lower bounds for the β1 estimate. For example, from Table 2, the 95% confidence
interval for β1 is [0.028, 0.058]; exponentiating both endpoints and subtracting one yields
the 95% confidence interval [0.0280, 0.0592] for the proportional change, or equivalently
[2.80%, 5.92%], as given in Table 2.

Result 2: 95% range.Under the assumptions of the mixed linear regression model described
in Eq. (1), it follows that for 95% of the reader population the proportional change in the median
interpretation time attributed to an increase of one unit in CAD will be within the interval

EQ-TARGET;temp:intralink-;e004;116;616½expðβ1 − 1.96σβ1iÞ − 1; expðβ1 þ 1.96σβ1iÞ − 1�: (4)

Proof. The proof is similar to that for Result 1 for CAD, with the typical reader being
replaced, in terms of the CAD coefficient distribution across readers, by the 2.5th percentile
(β1i ¼ β1 − 1.96σβ1i ) and the 97.5th percentile (β1i ¼ β1 þ 1.96σβ1i ) readers to obtain the lower
and upper boundaries, respectively, of Eq. (4).

5.3.2 Example

We estimate the boundaries of the interval Eq. (4), by replacing parameters by their estimates.

For example, using the regression model estimates β̂1 ¼ 0.04257 and σ̂2β1i ¼ 0.000167, the
estimated interval is

EQ-TARGET;temp:intralink-;e005;116;462h
exp

�
0.04257 − 1.96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.000167

p �
− 1; exp

�
0.04257þ 1.96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.000167

p �
− 1

i

¼ ½0.0174; 0.0703� ¼ ½1.74%; 7.03%�: (5)
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