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1 Introduction
One of the most important aspects of designing a diagnostic
reader-performance study is determination of adequate sample
size. The sample size should be large enough to provide suffi-
cient power (typically at least 0.80) to detect a specified effect
size, which often is defined as the difference in population-aver-
aged reader-performance measures between two imaging
modalities. Ideally, the specified effect size represents the mini-
mum effect size that is considered to be clinically significant, but
because of financial or logistical considerations the researcher
may specify a somewhat larger effect size. In addition, prior
information can influence the selection of the specified effect
size. In Sec. 4, we discuss selection of the predetermined effect
size in more detail.

The specified effect size should be determined by the
researcher in the planning stage of the study. The topic of
this paper is computation of adequate sample size for diagnostic
radiologic studies involving several readers (typically radiolog-
ists), which we refer to as multireader multicase (MRMC) stud-
ies, for a specified effect size.

A typical MRMC study design is the factorial design, where
each case (i.e., patient) undergoes each of several diagnostic
tests (or imaging modalities) and the resulting images are inter-
preted by each of several readers. Often each reader is asked to
assign a confidence-of-disease rating to each case for each test,
based on the corresponding image or set of images, and a
receiver-operating-characteristic (ROC) curve for each reader
is estimated from the case-level ratings. The diagnostic tests
are then compared with respect to reader-performance outcomes
that are typically functions of the reader ROC curves. A com-
monly used reader-performance summary outcome is the area

under the ROC curve (AUC). Usually, it is desired that conclu-
sions generalize to both the reader and case (i.e., patient) pop-
ulations, rather than to only one of the populations.

This paper serves two purposes: (1) It provides an introduc-
tory demonstration of the recently created software program
“Multireader sample size program for diagnostic studies” (freely
available in Ref. 1), written by the authors, for sizing MRMC
studies. (2) It discusses the statistical methodology underlying
the software, providing sufficient information for readers who
may want to create their own sample size software or to include
sample size estimation in simulation studies. The introductory
software demonstration requires only a basic understanding of
statistics, comparable to that provided in an introductory statis-
tics course. In contrast, the discussion of the underlying statis-
tical methodology requires a higher level of understanding,
comparable to that gained from taking statistics courses in math-
ematical statistics, regression, and design of the experiments.
However, we emphasize that use of the software does not require
extensive statistical methodology understanding; thus for read-
ers only interested in using the software to size studies, we sug-
gest either skimming or skipping Sec. 7, which contains the
discussion of the underlying statistical methodology.

The software is based on the Obuchowski and Rockette (OR)2

and Dorfman, Berbaum, and Metz (DBM)3,4 analysis methods,
which are the most frequently used methods for analyzing
MRMC studies. The OR method includes the DBM method
as a special case, and hence is the more general method. Since
the OR and DBM methods were first proposed, they have
been unified, improved, and generalized by Hillis and
colleagues.5–8 It is these improved versions of OR and DBM,
which are what are used today, that the program is based on.

The program computes the reader and case sample sizes
needed to detect a specified effect size, defined as the difference
in a reader-performance measure (frequently AUC) between two
tests. The sample size computations depend on the user-
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specified effect size and on the user-supplied parameter values
that describe the distribution of the reader performance out-
comes. The needed parameter value inputs can be estimated
from pilot data or from previous similar studies or can be
conjectured.

Important contributions of the software are the following:
(1) In addition to the factorial design, the software can be used
for four other study designs. (2) Although usually it is desirable
to generalize to both the reader and case populations, sometimes
an analysis that generalizes only to the reader or case popula-
tions may be more appropriate because of the study design or
limited resources. This software can be used for any of these
three inference situations.

An outline of the paper is as follows. In Sec. 2, we discuss
features of the program and in Sec. 3 we present illustrative
examples of running the program using pilot-data parameter
estimates. In Sec. 4, we discuss specification of the effect
size, in Sec. 5, we discuss using the software with designs
other than the factorial design, and in Sec. 6, we provide an
introduction to determining conjectured values. Methodology
underlying the program is discussed in Sec. 7 for the most com-
monly used study design, the factorial design, where each reader
evaluates each case using under each test. We emphasize that
Sec. 7 can be skipped for readers primarily interested in
using the software. Concluding remarks are made in Sec. 8.

2 Features of the Program

2.1 Functionality

The program file is an executable Java jar file that runs on
Windows, OS X, and Linux. The same downloadable file can
be used with all three operating systems.

2.2 Outcomes

The program can be used with typical reader-performance mea-
sures, such as sensitivity, specificity, and ROC curve summary
measures, which include AUC, partial AUC, sensitivity for
specified specificity, and specificity for specified sensitivity.
These measurements can be estimated using parametric or non-
parametric methods. In addition, the program can be used with
free-response ROC (FROC),9,10 localization-response operating
characteristic (LROC),11–13 and region-of-interest (ROI)14 sum-
mary measures. For simplicity, we often implicitly assume that
the reader-performance measure of interest is AUC.

2.3 OR and DBM Inputs: Input Conversion Program

For the factorial study design, the DBM method is equivalent to
the OR method when both use the same AUC estimation method
and OR uses the jackknife method for estimating the error vari-
ance and covariances (due to reading the same cases). The OR
method is more general than DBM because it can accommodate
other methods of estimating the error covariances, such as the
method of DeLong et al.15 for trapezoid AUC estimates and the
method of bootstrapping. The program allows the user to per-
form analyses based on output from either OR or DBM analy-
ses. Although the program will ask the user for OR parameters
values, the “input conversion program” that is available from the
help menu can be used to convert DBM parameter values, DBM
mean squares, and OR mean squares to the needed OR param-
eter values.

One reason we emphasize the OR parameter values over the
DBM parameter values is because they are easier to interpret.
Another reason is that the OR model, because of its firmer stat-
istical foundation, has been the basis for all new development in
the last 10 years. For example, although the OR approach has
been developed8 for all five of the study designs included in this
software, the DBM approach has only been developed for the
factorial design.

2.4 Inference Situations

The program computes sample sizes for three inference
situations:

1. Both readers and cases are random.

2. Readers are fixed and cases are random.

3. Readers are random and cases are fixed.

Corresponding analysis results generalize, respectively, to
(1) the reader and case populations for which the study reader
and cases are representative; (2) the case population when evalu-
ated by the particular readers in the study; and (3) the reader
population when evaluating the particular cases used in the
study. Determination of the appropriate inference situation
depends on the research question and study design.

Researchers typically would like to generalize to both the
reader and case populations, which requires a study having
more than one reader in order to estimate between-reader vari-
ability. Although theoretically such a study can have as few as
two or three readers, results are more convincing with at least
four or five readers since then the sample seems more likely to
be representative of a population of similar readers. Thus, we
recommend that a researcher use at least four readers, preferably
more, if the goal is to generalize to both reader and case pop-
ulations. If financial or logistical concerns limit the number of
readers to less than four, then we recommend using a fixed-read-
ers and random-cases (inference situation 2) analysis. Even
though such a study does not generalize to readers, it can pro-
vide an important first step in establishing a conclusion (e.g.,
one modality is superior when used by the readers in the
study) when previous studies have not been undertaken.

A random-readers and fixed cases (inference situation 3)
analysis may be appropriate when an inference situation 1 analy-
sis is not feasible, especially when generalization to the reader
population is deemed more important than to the case popula-
tion. This can happen, e.g., when the “test” factor is a reader
psychological or demographic factor. For instance, a researcher
may want to compare performance for radiologists versus res-
idents or for readers grouped according to how many cases they
read per year. For these examples, each test level represents
a descriptive quality of the reader, and hence each reader eval-
uates cases under only one of the test levels. These are examples
of the reader-nested-within-test split plot study design, dis-
cussed in Sec. 5. An alternative analysis approach for this design
is the nonparametric Wilcoxon rank-sum test, which similarly
gives conclusions that generalize to the respective reader pop-
ulations when restricted to reading the study cases. In practice,
such comparisons are often secondary comparisons performed
on data resulting from a factorial study where the primary aim is
to compare imaging modalities. For example, each reader reads
each case under each modality and the modalities are compared
using the type 1 inference approach, but the researcher also
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wants to compare residents versus radiologists within each
modality (a reader-nested-wthin-test analysis) using a type 3
inference analysis to increase power.

Regardless of what analysis method is used, it is important
that authors state for which populations (reader, case, or both
reader and case) conclusions are applicable and discuss the
rationale for the analysis (e.g., why was an analysis chosen
that generalizes to only one population instead of both popula-
tions). Unfortunately, all too often this information is not pro-
vided, making it difficult for the reader to discern the scope of
the conclusions.

2.5 Hypotheses Tests

Either nonequivalence or noninferiority alternative hypotheses
tests can be specified. Both hypotheses are defined in terms
of expected reader performance outcomes. Statistical details
for both types of tests are provided in Sec. 7.2. The program
only allows for the comparison of two modalities.

2.6 Obtaining Input Values from Pilot Data

Pilot data estimates can be obtained from OR or DBM analyses.
Pilot data estimates from a factorial-design study can be used as
inputs for all of the designs. Software for performing the OR and
DBM methods for ROC data is freely available in Ref. 1 in both
a stand-alone version and in a version designed to be run with
SAS statistical software. For OR and DBM analyses of FROC
and ROI data, freely available stand-alone software is available
in Ref. 16.

2.7 User Manual

A user manual can be accessed from the help menu. It provides
illustrative examples of different sample-size analyses.

2.8 Running the Program

The program is designed with an intuitive point-and-click inter-
face. In the next section, we provide several examples illustrat-
ing use of the program.

3 Examples of Running the Program Using
OR Inputs

3.1 Pilot Data

To illustrate use of the program, we treat study data provided by
Carolyn Van Dyke, MD (Van Dyke)17 as pilot data for sizing a
future study. The Van Dyke study compares the relative perfor-
mance of single spin-echo magnetic resonance imaging (MRI)
to cinematic presentation of MRI for the detection of thoracic
aortic dissection. There are 45 patients with an aortic dissection
and 69 patients without a dissection imaged with both spin-echo
and cinematic MRI. In this factorial-design study, five radiolog-
ists independently interpret all of the images using a five-point
ordinal scale: 1 = definitely no aortic dissection,. . . , 5 = defi-
nitely aortic dissection. These data are available in Ref. 1.

For this study, the average spin-echo empirical AUC is 0.044
larger than the average cine empirical AUC (spin-echo average =
0.941, cine average = 0.897); however, there is not a significant
difference (p ¼ 0.0517) between the modalities based on either
a DBM or the equivalent OR analysis using jackknife error
covariance estimation. The 95% confidence interval (CI) for

the (spin-echo minus cine) difference in the reader-averaged
modality AUCs is ð−0.00036; 0.088Þ. For the examples in
Secs. 3.4–3.7, we consider the situation where a researcher
would like to know what combinations of reader and case sam-
ple sizes for a similar study will have at least 0.80 power to
detect an absolute difference of 0.05 between the modality
AUCs. We show how to determine the smallest case sample
size for each of several reader sample sizes that yields 0.80
power for detecting a 0.05 difference in spin-echo and cinematic
AUC, based on parameter estimates computed from the Van
Dyke data. We set alpha, the probability of a type I error,
equal to 0.05. In Sec. 3.8, we show how to compute the needed
sample sizes for testing if one modality is noninferior to
the other.

3.2 Obuchowski–Rockette Model

Let θ̂ij denote the AUC estimate for reader j using test i. For
analyzing these reader performance outcomes, OR2 proposed
the following ANOVA model where the error terms are corre-
lated to account for correlation resulting from each reader evalu-
ating the same cases:

EQ-TARGET;temp:intralink-;e001;326;513ModelM1∶ θ̂ij ¼ μþ τi þ Rj þ ðτRÞij þ εij; (1)

where μ is the fixed intercept term, τi denotes the fixed effect of
test i, Rj denotes the random effect of reader j, ðτRÞij denotes
the random test-by-reader interaction, and εij is the random error
term. All random effects are normally distributed with zero
means. We let σ2R, σ

2
TR, and σ

2
ε denote the variances of the reader,

test-by-reader, and error random effects, respectively. Model M1
treats both reader and case as random factors, and thus conclu-
sions generalize to both the reader and case populations.

Equicovariance of the errors between readers and tests is
assumed, resulting in three possible covariances:

EQ-TARGET;temp:intralink-;e002;326;369Covðεij; εi 0j 0 Þ

¼
(
Cov1 i ≠ i 0; j ¼ j 0ðdifferent test; same readerÞ
Cov2 i ¼ i 0; j ≠ j 0ðsame test; different readerÞ
Cov3 i ≠ i 0; j ≠ j 0ðdifferent test; different readerÞ

:

(2)

We assume

EQ-TARGET;temp:intralink-;e003;326;272Cov1 ≥ Cov3; Cov2 ≥ Cov3 and Cov3 ≥ 0 (3)

as recommended by Hillis.8 The quantities σ2ε , Cov1, Cov2, and
Cov3 are typically estimated using the jackknife,18 bootstrap,19

or the method of DeLong et al.15 Model M1 can alternatively be
described with population correlations

EQ-TARGET;temp:intralink-;e004;326;202ri ¼ Covi∕σ2ε ; i ¼ 1;2; 3 (4)

instead of the covariances, i.e., with Covi replaced by riσ2ε,
i ¼ 1;2; 3. (See Sec. 7 for a more detailed discussion of the
OR model.)

3.3 Parameter Estimates from Pilot Data

Partial output from performing an OR analysis comparing
empirical AUCs using OR-DBM MRMC 2.5 software (avail-
able in Ref. 20) with jackknife covariance estimation is pre-
sented in Fig. 1. In Fig. 1, the “estimates” section presents
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the reader AUC estimates and the “ANOVA tables (OR analysis
of reader AUCS)” section presents the ANOVA table corre-
sponding to the OR method. The “variance component and
error-covariance estimates” section presents the OR variance
components and error covariance estimates in the upper half,
and the DBM variance components estimates in the lower
half for readers familiar with the DBM method. For the sample
size program only OR estimates are required, and thus only
these will be discussed. The OR variance components and

error covariances, OR error correlations and OR mean squares
variance components are labeled in Fig. 1, with “Var(R),”
“Var(T*R),” and “Var(Error)” denoting the reader, test-by-
reader, and error random effect variances (i.e., σ2R, σ

2
TR, and

σ2ε) for model M1. Figure 1 provides all the needed information
for performing sample size estimation for a future study.
Although the parameter estimates in Fig. 1 are from a factorial
study, these estimates can also be used as inputs for any of the
other four study designs, as will be discussed in Sec. 5.2.

Fig. 1 Partial OR output from ROC AUC analysis of Van Dyke17 data using OR-DBM MRMC 2.5
software.
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3.4 Example: Running the Sample-Size Program for
Random Readers and Cases

We now show how to run the program for an analysis that treats
both readers and cases as random.

The first window of the program is shown in Fig. 2. This
window provides contact information for questions and referen-
ces that the software is based on.

Figure 3 shows the “step 1: specify study design” window.
Here, we have indicated that we want to do sample-size estima-
tion for a factorial study. Note that any of the four other designs,
which will be discussed in Sec. 5, could have been selected.

Figure 4 shows the “step 2: specify general options” window.
Here, we have indicated that we will input OR variance com-
ponents, and we have also chosen to input error covariances
rather than error correlations. If these OR parameter values
are not available but either (1) OR mean squares and error cova-
riances and variance, (2) DBM variance components, or
(3) DBM mean squares are available, then the input conversion
program (available in the help menu) can be used to convert
these values to the OR input values requested in step 2.

In Fig. 4, we have requested a nonequivalence test and have
requested that readers and cases be treated as random so that
conclusions will generalize to both the reader and case popula-
tions. We have also requested output that includes various com-
binations of reader and case sample sizes that will result in
a specified power (in step 5 we will specify power to be 0.8).

Figure 5 shows the “step 3A: input values” window. After
entering a descriptive file title, we have entered the OR test-
by-reader variance component [“Var(T*R)”], error variance
[“Var(Error)”], and Cov1, Cov2, and Cov3 values from Fig. 1.

Figure 6 shows the “step 3B: input values, cont.” window.
Here we have entered c* = 114, the number of cases in the
Van Dyke study, from Fig. 1.

Figure 7 shows the “step 4: specify effect size and alpha”
window. Here, we have indicated the effect size to be an
AUC difference of 0.05 and have set alpha equal to 0.05.

Figure 8 shows the “step 5: specify readers, cases, and
desired power” window. Here, we have requested power =
0.8, and have indicated that the program should compute the
number of cases needed for between 3 (the default minimum)
and 10 readers, with a maximum of 2000 cases.

Fig. 2 First window in sample-size program.

Fig. 3 Step 1 in sample-size program.
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Figure 9 shows the “results” window. The window lists user-
supplied values in the first two sections. These two sections are
followed by the “corresponding OR variance components,
covariance, and correlations” section; we previously supplied
all of the values in this section except for the error correlations
(r1, r2, r3). The “sample size results” section shows the number
of cases needed to yield 0.80 power as the number of readers
varies between 3 and 10. For example, we see that with six read-
ers we need 170 cases and with five readers we need 213 cases.
We see that for three readers the number of cases needed was not
less than the specified maximum of 2000, as indicated by
“<N/A>.”

3.5 Abnormal-to-Normal Case Ratio

Note that the program did not ask for the ratio of abnormal to
normal cases, but rather only for the total number of cases for the
pilot data. This is because the sample size results assume the
same abnormal-to-normal case ratio as for the pilot data,
which for the Van Dyke data is 45:69. Thus, for the solution,
five readers and 213 cases given in the “sample size results”
section in Fig. 9, the 45:69 ratio implies 84 diseased and 129
nondiseased cases. For the situation where the pilot sample
ratio is much different from that of the planned study, Hillis
et al.21 have proposed one way to compute pilot-study estimates

Fig. 4 Step 2 in sample-size program.

Fig. 5 Step 3A in sample-size program.
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that correspond to an abnormal-to-normal case ratio different
than that of the pilot study. However, this approach requires
resampling and hence is not included in the program.

3.6 Fixed Readers Example

For comparison, we rerun the program using the Van Dyke
parameter estimates but now treat readers as fixed. The fixed

readers OR model is similar to model M1, except that the reader
and test-by-reader effects are fixed rather than random, and
hence there are no reader and test-by-reader variance parame-
ters. (See Sec. 7.1.2 for a more detailed discussion of this
model.) The only change that needs to be made is to request
“readers fixed, cases random” instead of “both random” in
step 2. In step 5, we again set the maximum number of readers
equal to 10.

Fig. 6 Step 3B in sample-size program.

Fig. 7 Step 4 in sample-size program.

Fig. 8 Step 5 in sample-size program.
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The resulting “sample size results” window is shown in
Fig. 10. We see that considerably fewer cases are required
than when readers were treated as random. For example, now
126 cases are needed with five readers, whereas 213 cases
were required when readers were treated as random. This not
surprising because between-reader variability is not taken into
account with fixed readers. Accordingly, step 3 does not ask
the user to enter a value for the test-by-reader variance compo-
nent, which is why it is not listed in Fig. 10.

3.7 Fixed Cases Example

Now we rerun the program treating cases as fixed. The fixed
cases OR model is similar to model M1, except that the error
terms are assumed to be independent (see Sec. 7.1.3 for a
more detailed discussion of this model). The only change
that needs to be made is to request “readers random, cases
fixed” in step 2. The resulting “sample size results” window
is shown in Fig. 11. We see that 166 cases are needed with

Fig. 9 Van Dyke results for random readers, random cases.
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five readers, compared to 213 cases when both readers and cases
were treated as random. This decrease can be explained by the
fact that between-case variability is not taken into account with
fixed cases.

Note in Fig. 11 the following statement: “within-reader error
variance = error variance - Cov1 − Cov2 + Cov3 and is a
conservative estimate, i.e., it tends to overestimate the true
value.” Briefly, because cases are fixed, the error variance
will be less than for random cases because now it is attributed
only to within-reader variability. Without replications (e.g., each
reader evaluates each case twice, with a memory washout period
separating evaluations), this within-reader error variance cannot
be consistently estimated. However, we can estimate an upper
bound on it, which is a function of the error variance and cova-
riances for the random-readers and random-cases model, as indi-
cated by the above statement and discussed in more detail in
Sec. 7. Thus for this inference situation, the error variance
and covariances, obtained from the pilot data from Fig. 1, treat-
ing cases as random, are used to estimate the upper bound,

which is used as a conservative estimate of the error variance
for the fixed-cases computations. Note that although we use
the error variance and covariances from model M1 to estimate
the error variance for the fixed cases model, the error terms
in the fixed-cases model are independent, which implies that
the error covariances are all zero.

3.8 Noninferiority Hypotheses Example

In Sec. 3.4, we showed how to compute the needed sample size
for showing that two modalities are not equivalent. Now sup-
pose instead that our interest is to show that a “new” test is
at least as effective as a “standard” test in the sense that if
the standard test results in higher performance than the new
test, it is by less than a specified amount. Specifically, we
want to show that AUCS is less than AUCN þM, where
AUCS and AUCN are the expected AUCs corresponding to
the standard and new tests and M > 0 is the noninferiority mar-
gin. For this situation, we perform a one-sided noninferiority

Fig. 10 Van Dyke results for fixed readers, random cases.
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test, where the null hypothesis is that the new test is inferior to
the standard test (H0∶AUCS − AUCN ≥ M) and the alternative
hypothesis is that it is not inferior (H0∶AUCS − AUCN < M).
These hypotheses and corresponding test are discussed in
more detail in Sec. 7.6. Here, we are assuming that a higher
reader performance outcome value is indicative of improved
performance.

The effect size for the noninferiority test is AUCN − AUCS.
For example, if it is zero then we are computing the power to
conclude that the new test is not inferior to the standard test
given that the standard and new tests have the same expected
AUC. The effect size does not have to be positive, but it
must exceed −M because an effect size ≤ −M implies the
null hypothesis is true.

For illustration purposes, we now show how to determine the
needed numbers of readers and cases to test these noninferiority
hypotheses based on the Van Dyke estimates. We rerun the pro-
gram, again treating both readers and cases as random as in
Sec. 3.4. In step 2, we request “noninferiority” test. In step
4, as shown in Fig. 12, we specify the effect size to be 0.02,
the inferiority margin to be M ¼ 0.03 and α ¼ 0.025.

The results are shown in Fig. 13. Note that these noninfer-
iority-test sample size results with α ¼ 0.025, effect size ¼
0.02, and M ¼ 0.03 are the same as those in Fig. 9 for the non-
equivalence test with α ¼ 0.05 and effect size = 0.05. This is
because, as will be discussed in Sec. 7.6, for typical power val-
ues (e.g., ≥0.70) the noninferiority-test sample size results
are essentially the same as for the nonequivalence test with

Fig. 11 Van Dyke results for random readers, fixed cases.
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significance level 2α but with the nonequivalence effect size
defined as the noninferiority effect size plus M (i.e., 0.02þ
0.03 ¼ 0.05).

4 Effect Size: Further Considerations
Specification of the effect size for computing power is an impor-
tant part of sample size estimation. For a detailed treatment of
the subject, we recommend the paper by Lenth.22 Although it is
beyond the scope of this article to give more than a cursory treat-
ment of the subject, below we offer some basic guidelines. In
addition, we discuss how to report effect size estimates based on
the study data. Throughout this section, we assume that we will
perform a nonequivalence test.

4.1 Reporting the Estimated Effect Size

After the study has been completed and the test performed, we
recommend reporting a 95% CI for the true effect size, as
opposed to merely stating whether or not there was enough evi-
dence to conclude the alternative hypothesis. Effect sizes that are
contained within a 95% CI are considered to be commensurate
with the data, as they cannot be rejected at the 0.05 alpha level
using a two-sided hypotheses test; similarly, those values out-
side of the CI are not considered to be commensurate with
the data since they can be rejected. Hoenig and Heisey23

point out that “once we have constructed a CI, power calcula-
tions yield no additional insights.”

The situation that the researcher wants to avoid is having an
insignificant test where some of the effect sizes in the 95% CI
are considered to be clinically significant, making it impossible
to conclude whether the true effect size is clinically negligible or
clinically significant. (Note: by “clinically neglibible” we mean
not clinically significant, which is not the same as saying that the
effect size is zero.) For example, the analysis of the pilot data
discussed in Sec. 3.1 yielded a nonsignificant test result with

a point estimate and 95% CI for the effect size given by
0.044 and ð−0.00036; 0.088Þ, respectively. If the researcher
considers an AUC difference of, e.g., 0.08 to be clinically sig-
nificant, then the researcher can neither conclude that the true
effect size is clinically negligible or clinically significant.

Eng24 describes the situation succinctly:

In conjunction with a well-defined research question [Eng &
Siegelman, 1997], an adequate sample size can help ensure an
academically interesting result, whether or not a statistically
significant difference is eventually found in the study. The
investigator does not have to be overly concerned that the
study will only be interesting (and worth the expenditure
of resources) if its results are “positive.” For example, suppose
a study is conducted to see if a new imaging technique is better
than the conventional one. Obviously, the study would be
interesting if a statistically significant difference was found
between the two techniques. But if no statistically significant
difference is found, an adequate sample size allows the inves-
tigator to conclude that no clinically important difference was
found rather than wonder whether an important difference is
being hidden by an inadequate sample size.

4.2 Determining the Effect Size for Computing
Power

In practice, deciding on a specified effect size is typically an
iterative procedure involving three steps: (1) The researcher
specifies a minimum effect size for which the researcher
wants there to be a specified power to reject the null hypothesis.
If this is the first iteration, we recommend the researcher specify
what she considers to be the minimum clinically relevant effect
size. (2) Reader and case samples are determined that provide
the desired power for the specified effect size. (3) The researcher
considers whether the resulting reader and cases samples are

Fig. 12 Step 4 for testing noninferiority hypotheses.
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financially and logistically feasible. If not, then these three steps
are repeated as needed, changing either the effect size or power
in step 1 each time, until an acceptable combination of effect
size, power, and reader and case samples sizes results. We
also note that prior knowledge of the effect size should be
taken into account when applicable. We illustrate these concepts
below.

In Sec. 3.4, we showed how to compute the needed reader
and case sample sizes for detecting an effect size of 0.05 with
power = 0.80 and significance level = 0.05 based on the pilot
data discussed in Sec. 3.1, but we did not say how the researcher
chose the effect size of 0.05. Suppose that the researcher
had chosen 0.05 because she considered it to represent the
minimum clinically significant effect size. This approach has
the advantage of providing adequate estimated power to
detect any clinically meaningful effect size. Although the CI
ð−0.00036; 0.088Þ from the pilot study contains values
<0.05, because the researcher deems those values to be clinically

negligible, there is no need to use a smaller specified effect size.
On the other hand, if the upper CI bound had been <0.05 (e.g.,
0.04), then there would appear to be no reason to plan another
study since then we could conclude from the CI that the modal-
ity difference is clinically negligible.

In contrast, suppose that the researcher had considered 0.03
to represent the minimum clinically significant effect size but
had sized the study to detect a 0.05 effect size because of finan-
cial or logistical limitations. Recalling that the researcher com-
puted the necessary sample sizes to provide 80% power, it
follows that estimated power is <0.80 for clinically significant
effect sizes between 0.03 and 0.05. In addition, it seems quite
possible that the true effect size could be between 0.03 and 0.05
because this range of values is roughly in the center of the effect-
size CI computed from the pilot data. Thus, in this situation, we
would recommend that the researcher try to obtain more resour-
ces so that a lower effect size could be detected with suffi-
cient power.

Fig. 13 Van Dyke noninferiority results for random readers, random cases.
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A reviewer has noted that sometimes researchers will use an
estimated effect size (e.g., from pilot data) for sizing a future
study. This will result in the study being sufficiently powered
for effects sizes at least as large as the estimate but not for effect
sizes less than the estimate. Although we believe this may be a
reasonable approach to use when the nature of the outcome
makes it difficult to interpret effect size in a clinically meaning-
ful way, in general, we recommend the approach discussed
above that takes into account both clinical relevance and
prior knowledge of effect size.

5 Other Designs

5.1 Design Descriptions

Thus far, we have only discussed the factorial study design,
where each reader evaluates all cases under each test.
However, the program can be used for sizing four other balanced
study designs in addition to the factorial design. A brief descrip-
tion of these designs, with alternative names given in paren-
theses, is included below. For these models, μ denotes the
fixed effect of test; all random effects are assumed to be nor-
mally distributed with zero means; and all random effects are
assumed to be independent except for the error terms.

1. Factorial design (fully crossed design; paired-reader,
paired-case design). Each reader evaluates all cases
under each test. This is the most frequently used
design and optimizes efficiency for a given number
of readers and cases. The OR model for analyzing
data collected using this design is given by model
M1 (1).

2. Reader-nested-within-test split plot design (unpaired-
reader, paired-case design). Cases undergo all tests,
but each reader evaluates cases for only one of the
tests. That is, the readers differ between the tests,
with the number of readers the same for each test.
This study design is natural when readers are trained
to read under only one of the tests, or when each “test”
level represents a descriptive characteristic (e.g., resi-
dent or radiologist) for each reader, as briefly dis-
cussed in Sec. 2.4. The OR model for analyzing data
collected using this design is given by θ̂ij ¼ μþ
τi þ RðiÞj þ εij, where RiðjÞ denotes the random effect
of reader j nested in test i and εij is the error term,
having respective variances σ2RðCÞ (reader-nested-
within-test variance) and σ2ε . The error terms have
two possible covariances, Cov2 and Cov3, defined in
the same way as for model M1. There is no Cov1
because each reader reads under only one test.

3. Case-nested-within-test split plot design (paired-
reader, unpaired-case design). Each reader evaluates
all of the cases, but each case is imaged under only
one test, with equal numbers of cases imaged under
each test. This design is needed when the diagnostic
tests are mutually exclusive, for example, if they are
invasive, administer a high radiation dose, or carry
a risk of contrast reactions. The OR model for analyz-
ing data collected using this design is the same as
model M1 (1) with the additional constraints Cov1 ¼
Cov3 ¼ 0.

4. Case-nested-within-reader split plot design (paired-
case per reader, paired-reader design). Each reader
evaluates a different set of cases using all of the diag-
nostic tests. Compared to a factorial design, the advan-
tage of this design is that typically the same power can
be achieved with each reader interpreting fewer cases,
but the disadvantage is that the total number of cases is
higher. The OR model for analyzing data collected
using this design is the same as model M1 (1) with
the additional constraints Cov2 ¼ Cov3 ¼ 0.

5. Mixed split plot design (factorial-nested-within-group
design). There are several groups (or blocks) of readers
and cases such that each reader and each case belongs
to only one group, and within each group all readers
evaluate all cases under each test. Each group has the
same numbers of readers and cases. If there is only one
reader per block, then this design reduces to the case-
nested-within-reader split plot design. The motivation
for this study design is to reduce the number of reader
interpretations for each reader, compared to the facto-
rial study design, without requiring as many cases to
be verified as the case-nested-within reader design.
The OR model for analyzing data collected using
this design is given by θ̂ij ¼ μþ τi þ RðhÞj þ
ðτRÞðhÞij þ εhij, where RhðjÞ denotes the random effect
of reader j nested in group h, ðτRÞðhÞij denotes the ran-
dom test-by-reader interaction effect nested in group
h, and εhij is the error term, having respective varian-
ces σ2RðGÞ (reader-nested-within-group variance),
σ2TRðGÞ (test-by-reader interaction-nested-within-
group variance), and σ2ε . The error terms, Cov1, Cov2,
and Cov3, are defined in the same way as for model
M1, except that they are not defined between errors
corresponding to different groups because the covari-
ance of those errors is zero. (We note that this formu-
lation differs slightly from that given by Hillis 8, which
also adjusts for group.)

Note that designs 2 and 3 are not used to improve efficiency,
but rather are needed for studies where readers are restricted to
reading under only one of the tests or when diagnostic tests are
mutually exclusive, which rules out using the factorial design. In
contrast, designs 4 and 5 can be used in studies where the fac-
torial design could also be used and are motivated by the need to
reduce the number of reader interpretations per reader, although
they will require more cases. See Ref. 25 for a discussion of
designs 2, 3, and 4, and Refs. 26 and 27 for a discussion of
design 5. Hillis8 provided rigorous derivations of the nonnull
test statistics for all five designs, which are the basis for the sam-
ple size computations in the program.

5.2 Using Factorial-Model Parameter Inputs with
Other Designs

The program is designed such that the parameter inputs for the
factorial model can be used to compute sample size results for
the other four study designs. Briefly, the relationships between
the factorial model parameters and the parameters for the other
designs are as follows. The design 3 and design 4 model param-
eters are the same as for the factorial model, except that Cov1 ¼
Cov3 ¼ 0 for design 3 and Cov2 ¼ Cov3 ¼ 0 for design 4. Thus
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their parameters are estimated by the corresponding factorial-
model estimates. The design 2 model parameters include a
reader-nested-within-test variance component, an error variance
component, and Cov2 and Cov3. The last three of these param-
eters are estimated by the corresponding factorial-model esti-
mates. Because the reader-nested-within-test variance has the
same interpretation as the sum of the factorial-model reader
and reader-by-test variance components, it is estimated by
their sum. Finally, the design 5 model parameters include a
reader-nested-within-group variance component, a test-by-
reader interaction variance component nested within group,
an error variance, and Cov2 and Cov3. The first two parameters
have the same interpretations as the factorial reader and test-by-
reader interaction variance components, respectively, and the
last three parameters are the same as those for the factorial
model; thus, these five parameters are estimated by the corre-
sponding factorial-model estimates. For further discussion of
these models, see Ref. 8.

5.3 Example: Comparing Sample Size Results for
the Factorial and Reader-Nested-Within-Test
Split-Plot Study Designs

In this example, we compute the number of cases and readers
needed to achieve 0.8 power for a reader-nested-within-test
study design, treating readers, and cases as random, using the
parameter estimates obtained from the Van Dyke factorial
study, shown in Fig. 1, as inputs. We then compare the results
with those obtained in Sec. 3.4 for a factorial study.

In step 1 of the program, we indicate the second option, the
reader-nested-within-test design. In step 2, we click on the same
options as in Fig. 4 for the factorial design. Figure 14 shows our
step 3A: input values” window inputs. Note that the requested
inputs in step 3A are the same as for the factorial design, shown
in Fig. 5, except that the reader variance is requested but not
Cov1. We provide the same inputs in steps 3B, 4, and 5 as
we did for the factorial design in Sec. 3.4.

Fig. 14 Step 3A for reader-nested-within-test split-plot study design.
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Results are shown in Fig. 15. Note that the second column
shows the number of readers per test. We see that 10 readers
in each of the two tests reading 135 cases results in 0.801
power, resulting in 2 × 10 × 135 ¼ 2700 total readings. In con-
trast, we see from Fig. 9 that for the factorial model, 0.801
power is achieved with eight readers reading 134 cases
under both tests, resulting in 2 × 8 × 134 ¼ 2144 total read-
ings. Thus, the factorial design is more efficient in the
sense that it requires fewer total readings and fewer readers
(8 versus 20) for approximately the same number of cases.
However, as previously mentioned, if available readers are
trained to read under only one of the tests, then the factorial
design is not an option. More generally, several factors, includ-
ing the training of the readers and availability and cost of both
readers and cases, will enter into the decision of which study
design is most suitable for a particular situation and research
question.

6 Using Conjectured Parameter Estimates
Our opinion is that whenever possible, parameter inputs for siz-
ing MRMC studies should be obtained from a pilot study or
from previous studies that are similar to the planned study.
However, in the absence of such studies, a researcher may
want to use conjectured values, e.g., for computing initial ball-
park sample size estimates for a study. Although a thorough dis-
cussion of how to determine conjectured parameter estimates is
beyond the scope of this paper, in this section, we give a brief
introduction to using conjectured inputs for sizing a factorial-
design study having two tests. This section can be skimmed
or skipped by readers only interested in using parameter
estimates obtained from previous studies or pilot studies.
However, we note that the discussion in this section is also help-
ful for interpreting the magnitude of the test-by-reader variance
component and error correlation estimates obtained at the analy-
sis stage.

Fig. 15 Results for reader-nested-within-test split-plot study design.
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For a given type of study, parameter values are affected by
several factors, including the type and magnitude of the accu-
racy outcome (e.g., ROC AUC, sensitivity, specificity, etc.), type
of disease, technology, training, and experience of the readers.
Thus, there is no one set of conjectured values that are appro-
priate for every situation.

The needed OR parameter values for sizing a factorial
design, using the notation in Fig. 1, are varðT � RÞ, var(error),
Cov1, and Cov2 − Cov3. Here, we are assuming that the
researcher wants to generalize to both the reader and case pop-
ulations. In place of Cov1 and Cov2 − Cov3, r1 and r2 − r3 can
be used. Note that we do not need the individual values for Cov2
and Cov3 or r2 and r3 but rather only the difference. Also
note that we do not need varðRÞ. Larger values of var(T*R),
var(error), and Cov2 − Cov3 (or r2 − r3), and smaller values
of Cov1 (or r1) result in more conservative sample size esti-
mates, i.e., larger samples sizes for a given power.

It can be shown (see Sec. 11 Appendix C) that var(T*R), the
test-by-reader variance component, is equal to half of the variance
of the test1 – test2 differences in the true reader accuracies, where
a reader’s “true reader accuracy” can be conceptually thought of
as the average accuracy outcome if the reader was to read many
randomly selected case samples. (More precisely, a fixed reader’s
true accuracy is the expected value of the accuracy outcome for a
randomly selected sample of cases.) Thus, var(T*R) is a measure
of between-test reader performance variability.

For typical reader accuracy outcomes, var(T*R) will not
depend on or only slightly depend on the reader or case sample
sizes, or on the normal-to-abnormal case ratio. For example, the
expected value (true accuracy) for the empirical AUC is
PrðY > XÞ þ :5 PrðY ¼ XÞ, where Y and X are ratings given
to a pair of randomly chosen abnormal and normal cases,
respectively; for continuous ratings, this value does not depend
on the reader or case sample sizes, or on the normal-to-abnormal
case ratio. Note that the true reader accuracies are not observed
and will have less variability than the observed accuracies com-
puted from the data, which include random measurement
error due to the random selection of cases and within-reader
variability.

Table 1 shows the relationship between the range of the
middle 95% of the true-accuracy difference distribution and
the corresponding var(T*R) value. For example, if for the pop-
ulation of readers the middle 95% of the test1 – test2 true-accu-
racy differences range between −0.02 and 0.08, resulting in
a middle 95% range of 0.10, then varðT � RÞ ¼ 0.00033. The
results in Table 1 follow from the fact that the middle 95%
range is approximately equal to 3.92 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðT � RÞp

, which fol-
lows from the normality of the true accuracies, implied by the
OR model.

Typically, conjectured values for the error correlations, r1, r2,
and r3, are used instead of the error covariances, Cov1, Cov2,
and Cov3, because they have been shown in simulations to be
relatively stable across different case and reader sample sizes
when rating data are generated from the same probabilistic stat-
istical model.28 In contrast, the covariances are dependent on the
case sample sizes. The correlation r1 is the within-reader
between-test correlation of accuracy measurement errors for
a fixed reader when reading random samples of cases. Thus,
it is a measure of similarity of within-reader measurement errors
for the two tests. The difference r2 − r3 describes, for two fixed
readers, similarity in between-reader correlation of accuracy
measurement errors within one test (r2) versus between two

different tests (r3). When tests 1 and 2 are very similar in nature,
we expect r2 − r3 to be close to zero. For 20 MRMC studies
reported by Rockette et al.29 with ROC AUC as the outcome,
values of r1 ranged from 0.35 to 0.59 (median ¼ 0.48) and
values of r2 − r3 ranged from −0.0.0196 to 0.0139. By
comparison, r1 and r2 − r3 were estimated to be 0.43 and
0.429 − 0.298 ¼ 0.131, respectively, for the Van Dyke study
(Fig. 1). It should be noted, however, that the 20 studies
were not independently performed. Instead, the 20 studies are
based on subsets of data from two original studies. Each of
the extracted studies is based on the same 529 cases and use
one of two unique sets of six readers.

When the outcome is the ROC AUC, the error variance is
often estimated using the following equation, proposed by
Obuchowski:30

EQ-TARGET;temp:intralink-;e005;326;216varðerrorÞ ¼ 1

n1
0.0099 expð−a2∕2Þ½ð5a2 þ 8Þ

þ ða2 þ 8Þ∕R�; (5)

where a ¼ ffiffiffi
2

p
Φ−1ðAUCÞ, AUC is the average of the test1 and

test2 AUCs, Φ−1 is the inverse of the cumulative normal distri-
bution function, n1 is the number of abnormal cases, n0 is the
number of normal cases, and R is the normal-to-abnormal case
ratio, n0∕n1. Obuchowski and McClish31 found this estimator to
work reasonably well for ordinal and continuous rating data
when either parametric or nonparametric estimates of the
AUC are used. Note that an assumption about the AUC must

Table 1 Relationship betweenmiddle 95% range of
test1-minus-test2 true-accuracy differences across
the reader population and test-by-reader interaction
variance, denoted by var(T*R). These results are for
any reader-performance outcome.

95% range var(T*R)

0.01 0.00000

0.02 0.00001

0.03 0.00003

0.04 0.00005

0.05 0.00008

0.06 0.00012

0.07 0.00016

0.08 0.00021

0.09 0.00026

0.10 0.00033

0.11 0.00039

0.12 0.00047

0.13 0.00055

0.14 0.00064

0.15 0.00073
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be made to compute Eq. (5) and that smaller values of AUC
produce larger values of var(error).

6.1 Examples

6.1.1 Comparison of conjectured and Van Dyke error
variances

In this example, we compare the conjectured error variance
obtained from Eq. (5), using the mean of the two test reader-
averaged AUC estimates and the case sample sizes from the
Van Dyke study (Fig. 1), with the error variance estimated
from the Van Dyke data. For the Van Dyke study, the mean
AUC is ð0.897þ 0.941Þ∕2 ¼ 0.92, n0 ¼ 69, n1 ¼ 45, and
R ¼ 69∕44. Using these values with Eq. (5) yields an error
variance of 0.00109, which compares with the data estimate
of 0.00080 given in Fig. 1; thus, the conjectured value is
36% higher and hence will produce more conservative sizing
results.

6.1.2 Using conjectured inputs with the program

In this example, we illustrate using the program to size a fac-
torial study using conjectured values for all of the parameters.
For the proposed study, there will be two tests and ROC AUC
will be the reader-performance outcome. Suppose the researcher
wants to obtain a conservative ballpark idea of the needed sam-
ple size to obtain 80% power to detect an effect size of 0.06 for
a nonequivalence test, treating both readers and cases as ran-
dom. She believes the mean of the two test AUCs is no
lower than 0.85. She plans to choose experienced readers for
the study and thus expects that variability among the readers’
comparisons of the two tests will be low, with the most of
the test1 – test2 true AUC differences being within a range
no larger than 0.06; thus based on Table 1 she uses 0.0001
for a conservative conjectured value of var(T*R). Because
the two tests are rather similar, she believes that r2 − r3 will
not exceed 0.05, and thus uses 0.05 as a conservative conjec-
tured value. She has no idea what to expect about r1, so she

Fig. 16 Results using conjectured inputs.
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chooses a conservative conjectured value of 0.35, the minimum
value from Ref. 29. Finally, she wants to use equal numbers of
normal and abnormal cases.

Inputting the values n1 ¼ 100, R ¼ 1, and AUC ¼ 0.85 into
Eq. (5) results in varðerrorÞ ¼ 0.000977. (Note that R ¼ 1
because the researcher wants equal numbers of normal and
abnormal cases.) The value of n1 is arbitrary: any value of
n1 can be used, as long as the inputted value for “total number
of cases (c*)” in step 3B is equal to n0 þ n1, or equivalently,
n1ð1þ RÞ, where n0 and R (or n0 and n1) are the values
used in Eq. (5).

Using the program with conjectured inputs proceeds the
same as when using pilot-study inputs except for two
differences. First, as noted above, the value for c� in step 3B
must correspond to the values used in Eq. (5), resulting in c� ¼
200 for our example. Second, the values inputted for r2 and r3
can be any values between 0 and 1, as long as r2 − r3 equals the
conjectured difference. Thus, for our example, where the con-
jectured difference is 0.05, inputting r2 ¼ 0.20, r3 ¼ 0.15 or
r2 ¼ 0.30, r3 ¼ 0.25 will give the same results. Results using
these conjectured values are shown in Fig. 16. We see, e.g.,
that 172 cases are needed with six readers.

6.2 Other Remarks

In this section. we have provided a brief introduction to using
conjectured values. For further examples, see Ref. 32 [pp. 220–
225] and Obuchowski and Hillis.33 However, a problem with
these two references is that the equation used for estimating
the test-by-reader interaction variance component is positively
biased, as noted by Hillis et al. [18, p 134]. It would be espe-
cially helpful for deciding on conjectured estimates if research-
ers would list all of the model parameter estimates when they
publish an MRMC study, which presently is rarely done. In
addition, it would be helpful to have available more studies
that give the parameter estimates for several MRMC studies,
similar to the study by Rockette.29 Finally, we note that Rockette
study also includes estimates for the test-by-reader interaction
variance component, but we have not utilized these in our dis-
cussion because they appear to have been computed incorrectly,
as discussed in Sec. 12 Appendix D.

7 Sample-Size Computation Methodology for
Factorial Test-by-Reader-by-Case Study
Design

In this section, we discuss the methodology underlying the soft-
ware. Throughout, we assume rating data have been collected
using a balanced test-by-reader-by-case factorial study design,
where each of r readers assigns a likelihood-of-disease rating to
each case using t ¼ 2 tests. This is the most frequently used
study design for multireader diagnostic imaging studies. In
this paper, we limit our discussion to this design; methodology
for the other four designs will be discussed separately.

For the reader mainly interested in using the software, this
section can be skimmed or skipped.

7.1 Models

In this section, we discuss the analysis models that correspond to
the three inference situations discussed in Sec. 2.4.

7.1.1 Random readers and random cases model

Let θ̂ij denote the AUC estimate (or more generally, a reader-
performance outcome), which has been computed from the like-
lihood-of-disease ratings assigned by reader j using test i to each
case. For analyzing these reader performance outcomes, OR2

proposed a test-by-reader factorial ANOVA model where the
error terms are correlated to account for correlation resulting
from each reader evaluating the same cases. With i ¼ 1; : : : ; t
and j ¼ 1; : : : ; r, their model is given as

EQ-TARGET;temp:intralink-;e006;326;646ModelM1∶ θ̂ij ¼ μþ τi þ Rj þ ðτRÞij þ εij; (6)

where μ is a fixed intercept term, τi denotes the fixed effect of
test i, Rj denotes the random effect of reader j, ðτRÞij denotes
the random test-by-reader interaction, and εij is the error term.
Model M1 treats both reader and case as random factors, and
thus conclusions generalize to both the reader and case popula-
tions. We note that model M1 given by Eq. (6) is the same as
model M1 given by Eq. (1) in Sec. 3.2, but we repeat some of the
description provided in Sec. 3.2 to make this section easier
to read.

The Rj and ðτRÞij are assumed to be mutually independent
and normally distributed with zero means and respective varian-
ces σ2R and σ2TR. The εij are assumed to be normally distributed
with mean zero and variance σ2ε and are assumed independent of
the Rj and ðτRÞij. Equicovariance of the errors between readers
and tests is assumed, resulting in three possible covariances:

EQ-TARGET;temp:intralink-;e007;326;450Covðεij; εi 0j 0 Þ

¼
(
Cov1 i ≠ i 0; j ¼ j 0ðdifferent test; same readerÞ
Cov2 i ¼ i 0; j ≠ j 0ðsame test; different readerÞ
Cov3 i ≠ i 0; j ≠ j 0ðdifferent test; different readerÞ

:

(7)

We assume

EQ-TARGET;temp:intralink-;e008;326;359Cov1 ≥ Cov3; Cov2 ≥ Cov3 and Cov3 ≥ 0 (8)

as recommended by Hillis.8 It follows from Eq. (6) that σ2ε ,
Cov1, Cov2, and Cov3 are also the variance and corresponding
covariances of the AUC estimates, treating readers as fixed.
Thus, σ2ε , Cov1, Cov2, and Cov3 are typically estimated
using fixed-reader methods such as the jackknife,18 bootstrap,19

or the method of DeLong et al.15 (DeLong’s method is only for
empirical AUC.) Model M1 can alternatively be described with
population correlations

EQ-TARGET;temp:intralink-;e009;326;245ri ¼ Covi∕σ2ε ; i ¼ 1;2; 3 (9)

instead of the covariances, i.e., with Covi replaced by riσ2ε,
i ¼ 1;2; 3.

The εij are interpreted as AUC measurement error attribut-
able to the random selection of cases, and to within-reader vari-
ability attributable to variation in how a fixed reader interprets
the same images on different occasions that are separated by a
memory washout period. Accordingly, OR2 partition the error
variance into two components

EQ-TARGET;temp:intralink-;e010;326;125σ2ε ¼ σ2c þ σ2w; (10)

where σ2c denotes variability attributable to cases and σ2w denotes
within-reader variability. It follows, as suggested by Hillis
et al.,21 that we can write the error term as the sum
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EQ-TARGET;temp:intralink-;sec7.1.1;63;752εij ¼ uij þ wij;

where uij denotes the random effect of cases; wij denotes the
random within-reader effect; uij and wij are normally distributed
with zero means and with varðuijÞ ¼ σ2c, varðwijÞ ¼ σ2w; the wij
are mutually independent and are independent of the uij; and the
uij are correlated and have the same covariance structure as the
εij, i.e.,

EQ-TARGET;temp:intralink-;e011;63;664Covðuij; ui 0j 0 Þ ¼ Covðεij; εi 0j 0 Þ: (11)

It follows that model M1 can be written in the form:

EQ-TARGET;temp:intralink-;e012;63;610ModelM1 ðalternative formÞ∶ θ̂ij

¼ μþ τi þ Rj þ ðτRÞij þ uij þ wij: (12)

OR2 expressed the covariances in the form Covi ¼ σ2cri,
i ¼ 1;2; 3, where ri is defined by ri ¼ Covi∕σ2c, which is the
correlation of the ðuij; uij 0 Þ pair corresponding to Covi. We
use the correlation definitions given by Eq. (9) because they
are used by current software, as it is not possible to estimate
σ2c or σ2w without replications.

Although σ2c and σ2w cannot be estimated without replica-
tions, we show in Sec. 9 Appendix A that

EQ-TARGET;temp:intralink-;e013;63;469σ2w ≤ σ2ε − Cov1 − ðCov2 − Cov3Þ: (13)

In Sec. 7.4, we will utilize Eq. (13) for estimating sample size for
the fixed-cases model.

7.1.2 Fixed-readers model

For an analysis for which conclusions apply only to the readers
in the study, we treat the reader and test-by-reader effects as
fixed in model M1, as given by Eq. (6). This results in the
fixed-readers model

EQ-TARGET;temp:intralink-;e014;63;342ModelM2∶ θ̂ij ¼ μþ τi þ Rj þ ðτRÞij þ εij; (14)

where Rj denotes the fixed effect of reader j and ðτRÞij denotes
the fixed test-by-reader interaction. The εij are assumed to be
normally distributed with mean zero and variance σ2ε and to
be equicovariant as defined by Eq. (7). This model has been
discussed in Refs. 2 and 6. Without loss of generality, we impose
the following constraints on model M2:

EQ-TARGET;temp:intralink-;e015;63;241

Xr

j¼1

Rj ¼
X2
i¼1

ðτRÞij ¼
Xr

j¼1

ðτRÞij ¼ 0: (15)

7.1.3 Fixed-cases model

For an analysis that treats readers as random and cases as fixed,
we set σ2c ¼ 0 in model M1, as given by Eq. (12), resulting in the
fixed-cases model:

EQ-TARGET;temp:intralink-;e016;63;133ModelM3∶ θ̂ij ¼ μþ τi þ Rj þ ðτRÞij þ wij; (16)

where the Rj, ðτRÞij, and wij are assumed to be mutually inde-
pendent and normally distributed with zero means and respec-
tive variances σ2R, σ

2
TR, and σ2w. Note that unlike models M1 and

M2 for which the error terms are equicovariant, we assume inde-
pendence of the wij error terms in model M3.

7.2 Nonequivalence Test Hypotheses and Test
Statistics

Our software computes the needed sample sizes for comparing
t ¼ 2 tests. For the nonequivalence test, the null hypothesis
states that the two tests are equivalent and the alternative hypoth-
esis states that they are not equivalent, with equivalence defined
in terms of the expected reader performance outcomes. In this
section, we describe these hypotheses for each of the three mod-
els and present the corresponding test statistics.

7.2.1 Random readers and random cases analysis

It follows from model M1, as specified by Eq. (6), that the
expected reader performance outcome for test i is Eðθ̂ijÞ ¼
μþ τi. This is the expected performance outcome for a ran-
domly selected reader reading a randomly selected case sample.
The null hypothesis of equivalence states that the two tests
have the same expected reader performance outcomes, i.e.,
H0∶Eðθ̂1jÞ ¼ Eðθ̂2jÞ, or equivalently, H0∶μþ τ1 ¼ μþ τ2 ⇔
τ1 ¼ τ2. The alternative hypothesis of nonequivalence states
that they are not equal, i.e., H1∶Eðθ̂1jÞ ≠ Eðθ̂2jÞ, or equiva-
lently, H1∶τ1 ≠ τ2.

The test statistic for testing these hypotheses is

EQ-TARGET;temp:intralink-;e017;326;461F ¼ MSðTÞ
MSðT � RÞ þ r maxðdCov2 − dCov3; 0Þ ; (17)

where dCov2 and dCov3 are estimates for Cov2 and Cov3, and
MS(T) andMS(T*R) are the test and test-by-reader mean squares
computed from the reader performance outcomes θ̂ij, i ¼ 1;2,

j ¼ 1; : : : ; r. Specifically, MSðTÞ ¼ r
P

2
i¼1 ðθ̂i· − θ̂··Þ2∕ðt − 1Þ

and MSðT�RÞ¼P
2
i¼1

P
r
j¼1ðθ̂ij−θ̂i·−θ̂·jþθ̂··Þ2∕½ðt−1Þðr−1Þ�,

where θ̂1· and θ̂2· denote the mean of the reader AUC estimates
for test 1 and test 2, respectively; i.e., θ̂i· ¼ 1

r

P
r
j¼1 θ̂ij, i ¼ 1;2.

Note that t − 1 ¼ 1 since we assume t ¼ 2 tests. Letting Fp;df1;df2
denote the pð100Þth percentile of an F distribution with numerator
and denominator degrees of freedom df1 and df2, respectively,
for significance level α the null hypothesis is rejected if
F > F1−α;df1;df2 , where df1 ¼ t − 1 ¼ 1 and

EQ-TARGET;temp:intralink-;e018;326;264df2 ¼
½MSðT � RÞ þ r maxðdCov2 − dCov3; 0Þ�2

½MSðT � RÞ�2∕½ðt − 1Þðr − 1Þ� : (18)

Hillis6 derived Eq. (18) and showed that it resulted in
improved performance of the original OR method.

7.2.2 Fixed-readers analysis

It follows from model M2, as specified by Eq. (14), that the
expected reader performance outcome for test i and fixed reader
j reading a randomly selected case sample is given as

EQ-TARGET;temp:intralink-;e019;326;131Eðθ̂ijÞ ¼ μþ τi þ Rj þ ðτRÞij: (19)

The null hypothesis of equivalence states that the two tests
have the same mean expected reader performance outcomes,
where the mean is computed across the study readers. It follows
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from Eqs. (15) and (19) that for test i, the mean of the expected
performance outcomes for the r fixed study readers is given by

EQ-TARGET;temp:intralink-;sec7.2.2;63;730

1

r

Xr

j¼1

Eðθ̂ijÞ ¼
1

r

Xr

j¼1

½μþ τi þ Rj þ ðτRÞij� ¼ μþ τi:

Thus, the null hypothesis of equivalence is H0∶
1
r

P
r
j¼1 Eðθ̂1jÞ ¼ 1

r

P
r
j¼1 Eðθ̂2jÞ, or equivalently, H0∶τ1 ¼ τ2,

and the alternative hypothesis of nonequivalence is H1∶
1
r

P
r
j¼1 Eðθ̂1jÞ ≠ 1

r

P
r
j¼1 Eðθ̂2jÞ, or equivalently, H1∶τ1 ≠ τ2.

Although in terms of the τi parameters, these hypotheses are
identical to those of model M1, their interpretation is different.
For the fixed-readers model, the hypotheses imply the tests are
equal or not equal in terms of the averages of the expected per-
formance outcomes for the specific readers in the study, whereas
for model M1, the hypotheses imply the tests are equal or not
equal in terms of the expected performance outcome for a ran-
domly chosen reader.

The test statistic for testing these hypotheses is

EQ-TARGET;temp:intralink-;e020;63;530χ2 ¼ ðt − 1ÞMSðTÞ
σ2ε − dCov1 þ ðr − 1ÞmaxðdCov2 − dCov3; 0Þ : (20)

Letting χ2p;df1 denote the pð100Þth percentile of a chi-squared
distribution with df1 degrees of freedom, for significance
level α the null hypothesis is rejected if χ2 > χ21−α;df1 where
df1 ¼ t − 1 ¼ 1. Test statistic Eq. (20) has been
discussed in Refs. 2, 5, and 6. Briefly, the OR model
implies that the numerator of the right side of Eq. (20),
ðt − 1ÞMSðTÞ, has a chi-squared null distribution with t − 1 ¼
1 degree of freedom when divided by E½MSðTÞjH0�, the
expected value of MS(T) given the null hypothesis is true.
The denominator is an estimate of E½MSðTÞjH0�. Thus, if
there is a moderate number of cases, resulting in relatively pre-
cise error variance and covariance estimates, then the right side
of Eq. (20) will have an approximate chi-squared null distribu-
tion with t − 1 ¼ 1 degree of freedom.

7.2.3 Fixed-cases analysis

It follows from model M3, as specified by Eq. (16), that the
expected reader performance outcome for test i is given by
Eðθ̂ijÞ ¼ μþ τi. This is the expected reader performance
value for a randomly selected reader, restricted to evaluating
only the study cases.

The null hypothesis of equivalence states that the two tests
have the same expected reader performance outcomes, i.e.,
H0∶Eðθ̂1jÞ ¼ Eðθ̂2jÞ, or equivalently, H0∶μþ τ1 ¼ μþ τ2 ⇔
τ1 ¼ τ2. The alternative hypothesis of nonequivalence states
that they are not equal, i.e., H1∶Eðθ̂1jÞ ≠ Eðθ̂2jÞ, or equiva-
lently, H1∶τ1 ≠ τ2. Although these hypotheses are mathemati-
cally the same as for model M1, their interpretation is
different. For this model, the hypotheses imply that the tests
are equal or not equal in terms of the expected value for a ran-
domly chosen reader reading only the study cases, rather than
a randomly selected sample of cases.

Model M3 is a conventional test-by-reader ANOVA model
with independent errors, where reader is a random factor and
test is a fixed factor. This is the same as a repeated measures
ANOVA model where test is the repeated measures factor,
i.e., each reader provides a reader-performance outcome

under each test. For two tests, this analysis is equivalent to
a paired t test performed on the reader-performance outcomes.
The conventional ANOVA test statistic is given as

EQ-TARGET;temp:intralink-;e021;326;719F ¼ MSðTÞ
MSðT � RÞ : (21)

For significance level α, the null hypothesis is rejected
if F > F1−α;t−1;ðt−1Þðr−1Þ.

7.3 Power Computation

7.3.1 Overview

To compute power, we must specify the nonnull distribution of
the test statistic, i.e., the distribution if H0 is not true. For model
M1, the approximate nonnull distribution has been derived by
Hillis.6,8 For models M2 and M3, the derivations of the approxi-
mate nonnull distributions are straightforward and are included
in Sec. 10 Appendix B. For models M1 and M3, the nonnull
distribution of the F test statistic is a noncentral F distribution;
for model M2, the nonnull distribution of the χ2 test statistic is
a noncentral chi-squared distribution. Thus, specification of the
nonnull distribution requires specification of the noncentrality
parameter and the degrees of freedom in terms of the model
parameters. We assume t ¼ 2 tests for all computations.

Let Fdf1;df2;λ denote a random variable having a noncentral F
distribution with degrees of freedom df1 and df2 and noncen-
trality parameter λ. If df1, df2, and λ correctly specify the non-
null distribution of the F statistic Eq. (17) or Eq. (21) for model
M1 or M3, respectively, then for significance level α the power
of the test is given as

EQ-TARGET;temp:intralink-;e022;326;407 PrðFdf1;df2;λ > F1−α;df1;df2Þ; (22)

which is the probability that the F test statistic exceeds the criti-
cal value F1−α;df1;df2 , i.e., the probability that the null hypothesis
is rejected. Similarly, let χ2df1;λ denote a random variable with a
noncentral chi-squared distribution with degrees of freedom df1
and noncentrality parameter λ. If df1 and λ correctly specify the
nonnull distribution of the χ2 test statistic Eq. (20) for model
M2, then the power of the test is given as

EQ-TARGET;temp:intralink-;e023;326;298 Prðχ2df1;λ > χ21−α;df1Þ: (23)

7.3.2 Algorithm for determining nonnull-distribution param-
eter formulas

The nonnull-distribution parameter equations can be determined
from the test statistic equations in the following way. With
t ¼ 2, for each of the three test statistics discussed in Sec. 7.2,
the numerator is MS(T), which can be written in the form

EQ-TARGET;temp:intralink-;e024;326;180MSðTÞ ¼ r
2
ðθ̂1· − θ̂2·Þ2: (24)

The noncentrality parameter can be obtained by replacing θ̂1·
and θ̂2· in Eq. (24) by their expected values and dividing by
the expected value of the denominator of the test statistic
after replacing Cov1, Cov2, and Cov3 estimates by their true
values.
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That is, the noncentrality parameter, denoted by λ, is given by

EQ-TARGET;temp:intralink-;e025;63;741λ ¼
r
2
d2

EðdenomÞ ; (25)

where the “effect size” d is the difference of the expected mean
AUCs

EQ-TARGET;temp:intralink-;e026;63;674d ¼ Eðθ̂2·Þ − Eðθ̂1·Þ; (26)

and “denom” denotes the denominator of the test statistic after
the covariance estimates have been replaced by their true values.

For model M1, df1 ¼ t − 1 ¼ 1 and df2 can be obtained
from the test-statistic df2 equations by replacing covariance esti-
mates by their true values and mean squares by their expected
values. For models M2 and M3, the degrees of freedom do not
depend on model parameters and are given by df1 ¼ t − 1 ¼ 1
for model M2, and by df1 ¼ t − 1 ¼ 1 and df2 ¼ ðt − 1Þðr − 1Þ
for model M3. (Note that there is no df2 for model M2 since its
test statistic has a chi-squared nonnull distribution.)

Below we illustrate using the algorithm to obtain the equa-
tions for the noncentrality parameters for all three models and
for df2 for model M1.

7.3.3 Random readers and random cases

For model M1, the denominator is MSðT � RÞ þ
r maxðdCov2 − dCov3; 0Þ. Assuming the covariance constraints
given by Eq. (8), replacing covariance estimates by their true
values yields

EQ-TARGET;temp:intralink-;e027;63;423denom ¼ MSðT � RÞ þ rðCov2 − Cov3Þ: (27)

Hillis6,8 shows that

EQ-TARGET;temp:intralink-;e028;63;381E½MSðT � RÞ� ¼ σ2τR þ σ2ε − Cov1 − Cov2 þ Cov3: (28)

It follows from Eqs. (27) and (28) that
EQ-TARGET;temp:intralink-;sec7.3.3;63;339

EðdenomÞ ¼ E½MSðT � RÞ� þ rðCov2 − Cov3Þ
¼ σ2TR þ σ2ε − Cov1 þ ðr − 1ÞðCov2 − Cov3Þ:

It follows from Eq. (25) that the noncentrality parameter is
given by

EQ-TARGET;temp:intralink-;e029;63;267λ ¼ rd2∕2
σ2TR þ σ2ε − Cov1 þ ðr − 1ÞðCov2 − Cov3Þ

: (29)

To write the degrees of freedom df2 in terms of the model
parameters, in Eq. (18) we replace MS(T*R) by its expected
value [Eq. (28)] and estimated covariances by their true values;
i.e., taking into account the constraints given by Eq. (8), we
replace maxðdCov2 − dCov3; 0Þ by Cov2 − Cov3. This results in

EQ-TARGET;temp:intralink-;e030;63;166df2 ¼
½σ2TR þ σ2ε − Cov1 þ ðr − 1ÞðCov2 − Cov3Þ�2

ðσ2TR þ σ2ε − Cov1 − Cov2 þ Cov3Þ2∕½ðt − 1Þðr − 1Þ� :
(30)

7.3.4 Fixed-readers model

For model M2, denom ¼ σ2ε − Cov1 þ ðr − 1ÞðCov2 − Cov3Þ
results after replacing covariances estimates in the denominator

of Eq. (20) by their true values. Because there are no random
quantities in denom, it follows that EðdenomÞ ¼ denom. From
Eq. (25), it follows that the noncentrality parameter is given by

EQ-TARGET;temp:intralink-;e031;326;719λ ¼ rd2∕2
σ2ε − Cov1 þ ðr − 1ÞðCov2 − Cov3Þ

: (31)

As noted above, df1 ¼ t − 1 ¼ 1.

7.3.5 Fixed-cases model

For model M3, the denominator is MS(T*R). It follows that
denom = MS(T*R) because there are no covariance estimates.
For this conventional repeated-measure ANOVA model, it is
well known that E½MSðT�RÞ�¼σ2TRþσ2w. Hence, EðdenomÞ ¼
σ2TR þ σ2w and

EQ-TARGET;temp:intralink-;e032;326;578λ ¼ rd2∕2
σ2TR þ σ2w

: (32)

As discussed in Sec. 7.3.2, df1 ¼ t − 1 ¼ 1 and df2 ¼
ðt − 1Þðr − 1Þ ¼ r − 1.

The nonnull-distribution noncentrality parameters and the
degrees of freedom for all three models are presented in Table 2.

7.3.6 Interpretation of the effect size d

The interpretation of the effect size d depends on the interpre-
tation of Eðθ̂i·Þ, i ¼ 1;2 for each of the three models. It follows
from the definitions of the models that d can be interpreted as
follows:

1. For model M1, d is the difference in the test 1 and test
2 expected reader performance outcomes for a ran-
domly selected reader evaluating a randomly selected
case sample.

2. For model M2, d is the difference of the test 1 and test
2 averages of the expected reader outcomes for the r
fixed study readers, when evaluating a randomly
selected case sample.

3. For model M3, d is the difference in the test 1 and test
2 expected reader performance outcomes for a ran-
domly selected reader evaluating the study cases.

Note that because models M1 and M3 treat readers as a ran-
dom sample, each reader has the same expected performance
outcome for a given test. In contrast, model M2 treats readers
as fixed, with each fixed reader having a (generally) different
expected performance outcome for a given test, resulting in
Eðθ̂i·Þ being the average of these r different fixed-reader
expectations.

7.4 Parameter Estimation

Power estimation requires estimates for the parameters σ2TR; σ
2
ε ,

Cov1, Cov2 − Cov3 (or r1 and r2 − r3) n-order to estimate the
noncentrality parameters and degrees of freedom. As previously
discussed, estimates for these parameters can be obtained from
analysis of pilot data using freely available software, or they can
be conjectured.

The parameter values depend on the number of cases and
the diseased-to-nondiseased case ratio. Following Hillis,
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Berbaum, and Obuchowski,21 we assume for a fixed case ratio
that the error variance and covariances are directly proportional
to case sample size while σ2R and σ2TR remain constant for differ-
ent case sizes and diseased-to-nondiseased ratios. These
assumptions were shown21 to approximately hold in simula-
tions. Thus, for power computations, the pilot-study estimates
of the error variance and covariances must be adjusted to
account for differences in the pilot data and power computation
sample sizes. Specifically, letting c� denote the number of pilot-
study cases that were evaluated by each reader, these estimates
are multiplied by a factor of c�∕c when computing power for c
cases. If parameter values are conjectured rather than estimated
from pilot data, then c� is the number of cases corresponding to
the conjectured error variance. In contrast, the values of σ2R and
σ2TR used in the power computation for various reader and sam-
ple sizes are the estimates obtained from pilot data.

For example, when computing power for model M1 for a
study with c cases and r readers, Eqs. (29) and (30) are modified
accordingly, resulting in noncentrality parameter and degrees of
freedom estimates

EQ-TARGET;temp:intralink-;sec7.4;63;144λ̂ ¼ rd2∕2
σ̂2TR þ c�

c ½σ̂2ε − dCov1 þ ðr − 1ÞmaxðdCov2 − dCov3; 0Þ� ;
and

EQ-TARGET;temp:intralink-;sec7.4;326;364

bdf2¼nbσ2TRþc�
c ½σ̂2ε−dCov1þðr−1ÞmaxðdCov2−dCov3;0Þ�o2nbσ2TRþc�

c ½σ̂2ε−dCov1−maxðdCov2−dCov3;0Þ�o2
∕½ðt−1Þðr−1Þ�

;

where σ̂2TR, σ̂
2
ε , dCov1, dCov2, and dCov3 denote pilot-study esti-

mates and c� denotes the number of cases in the pilot study.
Here, we have partially imposed the constraints given by
Eq. (8) by using the term maxðdCov2 − dCov3; 0Þ in place of
Cov2 − Cov3.

Similarly, for model M2, we modify Eq. (31) accordingly,
resulting in the noncentrality parameter estimate

EQ-TARGET;temp:intralink-;sec7.4;326;216λ̂ ¼ rd2∕2
c�
c ½σ̂2ε − dCov1 þ ðr − 1ÞmaxðdCov2 − dCov3; 0Þ� :

For model M3, there typically will not be an estimate of σ2w
available from pilot data because estimation requires replicated
data. Thus, we propose using

EQ-TARGET;temp:intralink-;e033;326;134σ̂2w ¼ c�

c
½σ̂2ε − dCov1 −maxðdCov2 − dCov3; 0Þ� (33)

as a conservative estimate for σ2w, which is justified by Eq. (13).
Combining this estimate with Eq. (32) yields

Table 2 Nonnull-distribution parameters and their corresponding estimates for the nonequivalence test for the factorial design. Models M1 and M3
each have an approximate noncentral F nonnull distribution with noncentrality parameter λ and degrees of freedom df1 ¼ t − 1 ¼ 1 and df2. Model
M2 has an approximate noncentral, chi-squared nonull distribution with noncentrality parameter λ, and degrees of freedom df1 ¼ t − 1 ¼ 1. Notes:
d = effect size as defined by Eq. (26); t = number of tests, with t ¼ 2; r = number of readers; c� = number of cases in the pilot study from which
parameter estimates were computed, or the number of cases corresponding to the error variance if parameter values are conjectured; c = number
of cases in planned study; σ̂2TR , σ̂

2
ε , dCov1, dCov2, and dCov3, are OR estimates from a factorial-design pilot study with c� cases, or are conjectured

values; NA = not applicable.

Nonnull-distribution parameters:

Model λ df2

M1
rd2∕2

σ2TR þ σ2ε − Cov1 þ ðr − 1ÞðCov2 − Cov3Þ
½σ2TR þ σ2ε − Cov1 þ ðr − 1ÞðCov2 − Cov3Þ�2

ðσ2τR þ σ2ε − Cov1 − Cov2 þ Cov3Þ2∕½ðt − 1Þðr − 1Þ�

M2
rd2∕2

σ2ε − Cov1 þ ðr − 1ÞðCov2 − Cov3Þ
NA

M3
rd2∕2

σ2TR þ σ2w

ðt − 1Þðr − 1Þ ¼ r − 1

Nonnull-distribution parameter estimates:

Model λ̂ bdf2
M1

rd2∕2

σ̂2TR þ c�
c ½σ̂2ε − dCov1 þ ðr − 1ÞmaxðdCov2 − dCov3; 0Þ�

�bσ2TR þ c�
c ½σ̂2ε − dCov1 þ ðr − 1ÞmaxðdCov2 − dCov3;0Þ��2�bσ2TR þ c�

c ½σ̂2ε − dCov1 −maxðdCov2 − dCov3;0Þ��2∕½ðt − 1Þðr − 1Þ�

M2
rd2∕2

c�
c ½σ̂2ε − dCov1 þ ðr − 1ÞmaxðdCov2 − dCov3; 0Þ� NA

M3
rd2∕2

σ̂2TR þ c�
c ½σ̂2ε − dCov1 −maxðdCov2 − dCov3;0Þ� ðt − 1Þðr − 1Þ ¼ r − 1
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Table 3 Power computation example. This table illustrates use of Table 2 equations for computing power for detecting a 0.05 difference in AUC for
a study design having seven readers and 148 cases, based on the Van Dyke parameter estimates from Fig. 1, with alpha ¼ 0.05.

Model M1:

EQ-TARGET;temp:intralink-;t003;63;697

λ̂ ¼ rd2∕2

σ̂2TR þ c
c� ½σ̂2ε − dCov1 þ ðr − 1ÞmaxðdCov2 − dCov3; 0Þ�

¼ 7ð0.05Þ2∕2
0.00020040þ 114

148 ½0.00080229 − 0.00034661þ ð7 − 1Þð0.00034407 − 0.00023903Þ� ¼ 8.439

EQ-TARGET;temp:intralink-;t003;63;613

bdf2 ¼
nbσ2TR þ c

c� ½σ̂2ε − dCov1 þ ðr − 1ÞmaxðdCov2 − dCov3;0Þ�o2n
σ̂2TR þ c

c� ½σ̂2ε − dCov1 −maxðdCov2 − dCov3; 0Þ�o2
∕½ðt − 1Þðr − 1Þ�

¼
n
0.00020040þ 114

148 ½0.00080229 − 0.00034661þ ð7 − 1Þð0.00034407 − 0.00023903Þ�
o
2n

0.00020040 þ 114
148 ½0.00080229 − 0.00034661 − ð0.00034407 − 0.00023903Þ�

o
2
∕ð7 − 1Þ

¼ 29.140

EQ-TARGET;temp:intralink-;t003;63;506Power ¼ PrðF
df1;bdf2;λ̂ > F

1−α;df1;bdf2Þ ¼ PrðF 1;29.14;8.439 > F 0.95;1;29.14 ¼ 4.18122Þ ¼ 0.802

Model M2:

EQ-TARGET;temp:intralink-;t003;63;431

λ̂ ¼ rd2∕2
c�
c ½σ̂2ε − dCov1 þ ðr − 1ÞmaxðdCov2 − dCov3; 0Þ�

¼ 7ð0.05Þ2∕2
114
148 ½0.00080229 − 0.00034661þ ð7 − 1Þð0.00034407 − 0.00023903Þ� ¼ 10.461

EQ-TARGET;temp:intralink-;t003;63;335Power ¼ Prðχ2
df1;λ̂

> χ21−α;df1Þ ¼ Prðχ21;10.461 > χ20.95;1 ¼ 3.8416Þ ¼ 0.899

Model M3:

EQ-TARGET;temp:intralink-;t003;63;272

λ̂ ¼ rd2∕2

σ̂2TR þ c�
c ½σ̂2ε − dCov1 −maxðdCov2 − dCov3; 0Þ�

¼ 7ð0.05Þ2∕2
0.00020040þ 114

148 ½0.00080229 − 0.00034661 − ð0.00034407 − 0.00023903Þ� ¼ 18.598

EQ-TARGET;temp:intralink-;t003;63;176

bdf2 ¼ ðt − 1Þðr − 1Þ ¼ 7 − 1 ¼ 6

EQ-TARGET;temp:intralink-;t003;63;126Power ¼ PrðF
df1;bdf2;λ̂ > F

1−α;df1;bdf2Þ ¼ PrðF 1;6;18.598 > F 0.95;1;6 ¼ 5.9874Þ ¼ 0.945
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EQ-TARGET;temp:intralink-;t003;63;752λ̂ ¼ rd2∕2
σ̂2TR þ c�

c ½σ̂2ε − dCov1 −maxðdCov2 − dCov3; 0Þ�
as our noncentrality estimate.

Estimates for the null-distribution noncentrality parameters
and degrees of freedom for all three models are presented in
Table 2. Correlation estimates can alternatively be used instead
of covariance estimates by replacing dCovi by riσ̂2ε, i ¼ 1;2; 3 in
the noncentrality and degrees-of-freedom estimate formulas.

7.5 Example

Table 3 illustrates the use of Table 2 equations and Eqs. (22) and
(23) for computing power for detecting a 0.05 modality differ-
ence in AUC for a study with seven readers and 148 cases, based
on the Van Dyke data parameter estimates from Fig. 1, with
alpha ¼ 0.05. Note that the power of 0.802 for model M1 agrees
with the power computed by the program for seven readers and
148 cases, included under “sample size results” in Fig. 9. As it is
typical, the power estimates for models M2 (0.899) and M3
(0.945) exceed that for model M1 (0.802); these power estimates
for models M2 and M3 can be obtained from the program by
specifying “power for specified reader and case sample sizes” in
step 2 and then requesting power for seven readers and 148 cases
in step 5.

7.6 Noninferiority Test Hypotheses

We assume that a higher value of the reader-performance measure
indicates better performance. Letting S and N denote “standard”
and “new” tests, the hypotheses for a noninferiority test34–40 are
given as
EQ-TARGET;temp:intralink-;e034;63;400

H0∶Eðθ̂SjÞ − Eðθ̂NjÞ ≥ M ðN is inferior to SÞ;
H1∶Eðθ̂SjÞ − Eðθ̂NjÞ < M ðN is not inferior to SÞ; (34)

where M > 0 is the noninferiority margin. The null hypothesis
states that the reader performance outcome for the standard test
exceeds that of the new test by at least M. If H0 is true, the new
test is considered to be inferior to the standard test. The alternative
hypothesis states that the standard test may result in higher reader
performance but by less than M. If H1 is true, the new test is
considered to be noninferior to the standard test. We define
the effect size for the noninferiority test by

EQ-TARGET;temp:intralink-;e035;63;260dinf ¼ Eðθ̂NjÞ − Eðθ̂SjÞ: (35)

Note that H1 implies dinf > −M.
A one-sided hypothesis test can be performed at significance

level α by computing a 100ð1 − αÞ% upper confidence bound
(UCB) for Eðθ̂SjÞ − Eðθ̂NjÞ and rejecting H0 if UCB is less
than M. Alternatively, equivalent results can be obtained by
computing a two-sided 100ð1 − 2αÞ% CI for Eðθ̂SjÞ − Eðθ̂NjÞ
and rejecting H0 if the interval lies entirely to the left of M.
For typical power values of interest (e.g., ≥0.7), power is for
practical purposes equal to power for a two-sided nonequiva-
lence test with significance level 2α and effect size Eðθ̂NjÞ −
Eðθ̂SjÞ þM ¼ dinf þM, where dinf is given by Eq. (35). This
is the approach used in the program. Specifically, power com-
putations for the inferiority test with significance level α are per-
formed as for the nonequivalence test using the nonnull

distribution equations in Table 2, but with the significance
level set to 2α and with d in column 1 of in Table 2 replaced
by dinf þM.

In practice, often a significance level of 0.025 is used for the
noninferiority test so that the decision rule will be based on
a 95% two-sided CI, which is consistent with guidelines41 pro-
vided by the US Food and Drug Administration and which pro-
vides consistency between significance testing and subsequent
estimation using 95% CIs.38 See Ref. 34 for a more detailed dis-
cussion of noninferiority hypotheses testing for multireader
ROC studies.

8 Discussion
The software “Multireader sample size program for diagnostic
studies” is a useful tool for sizing radiologic diagnostic studies
because of its ease of use and options for study designs, types of
hypotheses, and input and output formats; furthermore, it is
applicable to parametric and nonparametric reader-performance
outcomes, which include outcomes from ROC, FROC, LROC,
and ROI analyses. We illustrated use of the program, followed
by a discussion of the underlying statistical methodology. To
keep the paper at a reasonable length while at the same time
satisfying the needs of most researchers, methodology was dis-
cussed only for the most commonly used study design, the fac-
torial design. However, separately we will discuss methodology
and provide more examples for the other four designs included
in the program.

Although sample-size methodology for the factorial study
design for the OR and DBM methods has been discussed by
Hillis et al.,21 their discussion is limited to model M1, which
treats both readers and cases as random. A main contribution
of this paper is that it also includes a discussion of sample-
size methodology for models M2 and M3, which treat readers
or cases as fixed, respectively. Another contribution is the algo-
rithm for determining nonnull-distribution parameter equations,
provided in Sec. 7.3.2. This algorithm makes it easy to write
down the nonnull distributions directly from the test statistic
equations and can be used for all of the study designs included
in the program.

Power and sample size methodology for multireader diag-
nostic studies can be based on methods of analysis other
than the OR method. For the situation where the reader-perfor-
mance outcome of interest is the empirical AUC, Gallas
et al.42,43 have developed an often-used analysis method that uti-
lizes the fact that the empirical AUC is a U-statistic, which ena-
bles its variance to be expressed in closed form as a linear
combination of product moments of functions of the ratings.
An advantage of this method over the OR method is that it
is straightforward to size future studies for which the abor-
mal-to-normal case ratio differs from that of the pilot study.
Software for this method is freely available.44 A limitation of
this approach is that the reader-performance outcome must be
a U-stastistic, such as the empirical AUC; in contrast, the
OR method is applicable to all reader-performance outcomes.
Although there have been several bootstrapping approaches pro-
posed for multireader diagnostic studies (see Ref. 43 for a com-
parison and a discussion of bias problems), they are rarely used.

Finally, our intention has been to create a self-contained pro-
gram that prompts the user for needed inputs and requires min-
imal statistical understanding. We welcome and appreciate
questions and feedback related to using the program, as well
as suggestions for improving it.
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9 Appendix A: Derivation of Eq. (13)
For this proof, notation and definitions are the same as in
Sec. 7.1. It follows from Eqs. (7) and (11) that

EQ-TARGET;temp:intralink-;sec9;63;715varðu11 − u12 − u21 þ u22Þ ¼ 4ðσ2c − Cov1 − Cov2

þ Cov3Þ:

Because varðu11 − u12 − u21 þ u22Þ ≥ 0, it follows that
4ðσ2c − Cov1 − Cov2 þ Cov3Þ ≥ 0. Hence

EQ-TARGET;temp:intralink-;e036;63;642σ2c ≥ Cov1 þ Cov2 − Cov3: (36)

Equation (13) follows from Eqs. (10) and (36).

10 Appendix B: Nonnull Distribution
Derivations for Models M2 and M3

In this section, we derive the nonnull distributions for models
M2 and M3. Notation and definitions are the same as in Sec. 7.
Recall that for both models the nonequivalence-test hypotheses
are H0∶τ1 ¼ τ2 versus H1∶τ1 ≠ τ2.

10.1 Derivation of Nonnull F Distribution for Model
M3

Result 1: For model M3 with t ¼ 2 tests, the nonnull distribution
of the F-test statistic Eq. (21) has an F distribution with degrees
of freedom df1 ¼ t − 1 ¼ 1 and df2 ¼ ðt − 1Þðr − 1Þ and non-
centrality parameter

EQ-TARGET;temp:intralink-;e037;63;435λ ¼ rd2∕2
σ2TR þ σ2w

: (37)

Proof. Let df1 ¼ t − 1 and df2 ¼ ðt − 1Þðr − 1Þ. Model M3 is
a conventional ANOVA model with independent errors. It is
well known45 that MS(T) and MS(T*R) are independent, with

EQ-TARGET;temp:intralink-;e038;63;350

df1MSðTÞ
E½MSðTÞjH0�

∼ χ2df1;λ and
df2MSðT � RÞ
E½MSðT � RÞ� ∼ χ2df2 ; (38)

where

EQ-TARGET;temp:intralink-;e039;63;295E½MSðTÞjH0� ¼ E½MSðT � RÞ� ¼ σ2TR þ σ2w; (39)

EQ-TARGET;temp:intralink-;e040;63;269λ ¼
df1MSðTÞjθ̂ij¼Eðθ̂ijÞ

E½MSðTÞjH0�
; (40)

“∼” stands for “has the same distribution as,” χ2df1;λ denotes
a random variable with a noncentral chi-squared distribution
with degrees of freedom df1 and noncentrality parameter λ,
and χ2df2 denotes a random variable with a central chi-squared
distribution with degrees of freedom df2. These results do
not require t ¼ 2.

From the independence of MS(T) and MS(T*R), Eqs. (21),
(38), and (39) it follows that

EQ-TARGET;temp:intralink-;sec10.1;63;133F ¼
MSðTÞ

E½MSðTÞjH0�
MSðT � RÞ

E½MSðT � RÞ�
∼
χ2df1;λ∕df1
χ2df2∕df2

;

where the numerator and denominator of F are independent. It
follows that F has a noncentral F distribution with degrees of
freedom df1 ¼ t − 1 and df2 ¼ ðt − 1Þðr − 1Þ and noncentrality
parameter λ, defined by Eq. (40).

To complete the proof we need to show for t ¼ 2 that λ, as
given by Eq. (40), can be equivalently expressed in the form
given by Eq. (37). For t ¼ 2, it follows from Eqs. (24) and
(26) that

EQ-TARGET;temp:intralink-;e041;326;664MSðTÞjθ̂ij¼Eðθ̂ijÞ ¼
r
2
½Eðθ̂1·Þ − Eðθ̂2·Þ�2 ¼

r
2
d2: (41)

From Eqs. (39), (40), and (41), it follows that

EQ-TARGET;temp:intralink-;sec10.1;326;614λ ¼ rd2∕2
σ2TR þ σ2w

:

10.2 Derivation of Approximate Nonnull F
Distribution for Model M2

Result 2: For model M2 with t ¼ 2, the nonnull distribution of
the χ2 test statistic Eq. (20) has an approximate noncentral chi-
squared distribution with degrees of freedom df1 ¼ t − 1 ¼ 1
and noncentrality parameter

EQ-TARGET;temp:intralink-;sec10.2;326;499λ ¼ rd2∕2
σ2ε − Cov1 þ ðr − 1ÞðCov2 − Cov3Þ

:

Proof. Let t ¼ 2. We approximate the nonnull distribution of
the χ2 test statistic Eq. (20) by deriving the nonnull distribution
of

EQ-TARGET;temp:intralink-;e042;326;414χ̃2 ¼ ðt − 1ÞMSðTÞ
σ2ε − Cov1 þ ðr − 1ÞðCov2 − Cov3Þ

; (42)

which is similar to Eq. (20), except that covariance estimates
have been replaced by true values.

Using Eq. (24) we can write

EQ-TARGET;temp:intralink-;e043;326;330χ̃2 ¼ ðθ̂1· − θ̂2:Þ2
2
r ½σ2ε − Cov1 þ ðr − 1ÞðCov2 − Cov3Þ�

: (43)

It is straightforward to show that ðθ̂1· − θ̂2·Þ ∼ Nf−d; 2r ½σ2ε −
Cov1 þ ðr − 1ÞðCov2 − Cov3Þ�g, and hence

EQ-TARGET;temp:intralink-;e044;326;262

ðθ̂1· − θ̂2:Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
r ½σ2ε − Cov1 þ ðr − 1ÞðCov2 − Cov3Þ�

q
∼ N

8<: −dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
r ½σ2ε − Cov1 þ ðr − 1ÞðCov2 − Cov3Þ�

q ; 1

9=;:

(44)

Using the well-known result that if X ∼ Nðμ; 1Þ then
X2 ∼ χ2

1;μ2
, it follows from Eqs. (43)–(44) that χ̃2 ∼ χ2df1;λ, where

EQ-TARGET;temp:intralink-;sec10.2;326;127λ ¼ rd2∕2
σ2ε − Cov1 þ ðr − 1ÞðCov2 − Cov3Þ

:

Because the χ2 test statistic Eq. (20) uses covariance estimates
that usually are estimated relatively precisely because typically
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the number of cases is at least 50, we consider the null distri-
bution of ~χ2 to be an approximation to the nonnull distribution
of χ2.

11 Appendix C: Relationship Between
Test-by-Reader Variance and Variance of
Test1-Test2 Differences in True Reader
Accuracies

For the OR model, given by Eq. 6, for test i and fixed reader j
we define the true reader accuracy by

EQ-TARGET;temp:intralink-;sec11;63;638θij ¼ μþ τi þ Rj þ ðτRÞij:

Note that θij is equal to θ̂ij with the measurement error ϵij sub-
tracted. Statistically, θij is the expected value of θ̂ij for fixed
reader j and test i across randomly selected case samples. It fol-
lows from the assumptions of the OR model (now treating both
readers and cases as random) that

EQ-TARGET;temp:intralink-;sec11;63;551σ2TR ¼ 0.5varðθ1j − θ2jÞ;

i.e., the test-by-reader interaction variance component is equal to
half of the variance of the test1-test2 differences in the true
reader accuracies.

We note that this result has previously been given by Hillis,28

who refers to θij as the reader-specific expected accuracy.

12 Appendix D: Apparent Incorrect
Computation of var(T*R) Estimates in
Rockette et al. Paper

The test-by-reader variance component estimates in the paper by
Rockette et al.29 were computed using the DBMmethod, which,
as previously mentioned, is equivalent to a special case of the
OR method. The DBM and OR model test-by-reader interaction
variance components have been shown5 to be equal and hence
have the same interpretation. However, 14 of the 20 Var(T*R)
reported values reported in the Rockette et al. paper exceed
0.125. This is problematic because, making the reasonable
assumption that the true reader AUCs are between 0.5 and
1.0 (and hence the between-test differences range from −0.5
to 0.5), it follows that the largest possible variance for the
between-test true AUC differences is 0.25, which implies (by
the Sec. 11 Appendix C result) that the test-by-reader interaction
variance component cannot exceed 0.25∕2 ¼ 0.125.

Rockette et al. described how they computed this variance
component:

We also estimated the modality-by-case and modality-by-
reader interaction by using the general procedure proposed
by Dorfman, Berbaum, and Metz (4) [1992] for our four stud-
ies on resolution, brightness, and compression. To accomplish
this, we obtained the 529 estimates of areas under the ROC
curves associated with eliminating one case for each reader.
The corresponding pseudovalues were then computed for
all cases and used to conduct a mixed-model analysis of vari-
ance with readers and cases used as random effects and modal-
ity as a fixed effect.

We now explain their computations in more detail. Let θ̂ij
denote the empirical AUC estimate for modality i and reader
j, and let θ̂ijðkÞ denote the empirical AUC estimate for modality
i and reader j when data for case k are omitted from the

computation. Pseudovalues are defined for each possible modal-
ity-reader-case combination by Yijk ¼ cθ̂ij − ðc − 1Þθ̂ijðkÞ,
where c is the number of cases. The mixed-model analysis
that they refer to assumes the model proposed by Dorfman
et al.,3 known as the DBM model, for which the outcome is
Yijk, modality is a fixed effect, reader and case are random
effects, and modality-by-reader, modality-by-case, reader-by-
case, and modality-by-reader-by-case interactions are included
in the model as random effects.

Because the DBM software available at the time that the
Rockette et al. paper was published did not output an estimate
of var(T*R), it is reasonable to assume that they computed the
estimate directly from the relevant mean squares. The conven-
tional unbiased estimate of the modality-by-reader interaction,
var(T*R), is given by ½MSðT � RÞ −MSðT � R � CÞ�∕c, where
MS(T*R) and MS(T*R*C) are the test-by-reader and test-by-
reader-by-case mean squares computed from the pseudovalues.
We also note that this estimate can be deduced from Table 1
provided by Dorfman et al.,3 which includes the expected
mean squares written in terms of the variance components.
We suspect that the authors forgot to divide by c ¼ 529, because
doing so results in var(T*R) estimates between 0.00013 and
0.00087, which is a more typical range.
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