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Abstract. Maintaining or even improving image quality while lowering patient dose is always the desire in clinical
computed tomography (CT) imaging. Iterative reconstruction (IR) algorithms have been designed to allow for a
reduced dose while maintaining or even improving an image. However, we have previously shown that the dose-
saving capabilities allowed with IR are different for different clinical tasks. The channelized scanning linear
observer (CSLO) was applied to study clinical tasks that combine detection and estimation when assessing
CT image data. The purpose of this work is to illustrate the importance of task complexity when assessing
dose savings and to move toward more realistic tasks when performing these types of studies. Human-observer
validation of these methods will take place in a future publication. Low-contrast objects embedded in body-size
phantoms were imaged multiple times and reconstructed by filtered back projection (FBP) and an IR algorithm.
The task was to detect, localize, and estimate the size and contrast of low-contrast objects in the phantom.
Independent signal-present and signal-absent regions of interest cropped from images were channelized by
the dense-difference of Gauss channels for CSLO training and testing. Estimation receiver operating character-
istic (EROC) curves and the areas under EROC curves (EAUC) were calculated by CSLO as the figure of merit.
The one-shot method was used to compute the variance of the EAUC values. Results suggest that the IR algo-
rithm studied in this work could efficiently reduce the dose by ∼50% while maintaining an image quality com-
parable to conventional FBP reconstruction warranting further investigation using real patient data. © The Authors.
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1 Introduction
The advent of multiple detector computed tomography has led
to various approaches in medical computed tomography (CT)
imaging. Its rapid volume acquisition makes CT angiography
and CT colonography routine. However, the wide and increasing
usage of CT in modern medicine has increased patient dose,
which has become a concern in the CT community.1,2

Discussions regarding the associated estimated risk for radia-
tion-induced cancer have been well publicized.3–7 Regard-
less of the merits of these various arguments, it is always desir-
able to limit the dose to the patient. Consequently, different
hardware and algorithm solutions have been developed to main-
tain or even improve the image quality while the radiation dose
is reduced. The traditional CT reconstruction algorithm filtered
back projection (FBP) is well known for its speed and robust
image quality. However, FBP images suffer from noise and arti-
fact contaminations especially in low radiation dose conditions.
To lower the radiation dose without sacrificing image quality,
several iterative reconstruction (IR) algorithms were developed
and introduced commercially in the past several years.8–11 The
challenge of reducing dose is to maintain a clinically acceptable
image quality while decreasing exposure level.

To evaluate the image qualities of different image systems,
state-of-the-art medical image quality assessment methods that
extract desired information from the images for clinically inter-
esting tasks are now known to be good choices. A clinically
interesting and relevant task might be a detection task that
requires distinguishing normal cases from diseased cases.
Another example of a clinically relevant task is an estimation
task where the observer must provide information regarding, for
example, the size and contrast of the lesions. Image quality in
medical systems should be measured by an observer performing
a task or tasks of clinical interest. However, there is not a clear
choice for this task in CT imaging. Our previous studies have
shown different dose-savings depending upon the choice of
task.12,13 In this study, we focused on the application of the chan-
nelized scanning linear observer (CSLO) on CT images to quan-
titatively evaluate the performance of different reconstruction
algorithms under tasks that include signal detection, localiza-
tion, and estimation of size and contrast in an attempt to obtain
a more complete picture of dose savings. It should be noted that
this paper will focus on a mathematical observer model and that
validation of this observer model against human performance
will not be discussed in this paper but will be addressed in a
future publication. The outline of this paper is as follows: Sec. 2
describes the materials and methods used. More specifically,
Sec. 2.1 illustrates the idea of the scanning linear observer
(SLO); Sec. 2.2 depicts the selection of channels and the concept
of the channelization mechanism applied on the SLO; Sec. 2.3
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outlines the training dataset, testing dataset, and the estimation
method of variance for observer study; Sec. 2.4 provides the
brief ideas of IR algorithm; and Sec. 2.5 details the phantoms
used in this study and the process of data generation and acquis-
ition. Results of dose reduction based on the comparison
between algorithms are then shown in Sec. 3 followed by con-
clusions and discussions in Sec. 4.

2 Materials and Methods

2.1 Scanning Linear Observer

In this study, we focus on the application of the CSLO on CT
imaging systems. The concept of scanning linear estimation14 is
to approximate the mode of the posterior density and perform a
pseudo maximum a posteriori (MAP) estimation. This requires a
scan of parameter space to compare solutions and find the maxi-
mum. The general formula of MAP estimation is

EQ-TARGET;temp:intralink-;e001;63;562θ̂MAP ¼ argmaxθ½prðθjgÞ� ¼ argmaxθ

�
prðgjθÞprðθÞ

prðgÞ
�
; (1)

where θ and θ̂ are the parameters we are interested in and the
estimated parameter, respectively. The probability density func-
tion prðgjθÞ is the likelihood of data conditioned on the param-
eters to be estimated. To easily optimize this function, we will
consider the Gaussian likelihood. Note this approximation
does not imply that joint pdf prðg; θÞ is also Gaussian. Based on
this approximation, the conditional likelihood prðgjθÞ can be
described by

EQ-TARGET;temp:intralink-;e002;63;429prðgjθÞ≅ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πMdetðKgjθÞ

q exp

�
−1
2
½g−ḡðθÞ�tK−1

gjθ½g−ḡðθÞ�
�
;

(2)

where ḡðθÞ is the mean image averaged over the parameters θ,
Kgjθ is the sample covariance matrix conditioned on the param-
eters, and detð·Þ is the determinant of the matrix. Instead of
evaluating the covariance matrix and its inverse for every param-
eter, our second approximation is to use the mean of Kgjθ aver-
aged over all θ as was done in Ref. 14. To avoid the exponential
term of Eq. (2), the common strategy is to operate the natural
logarithm on both sides and ignore the term independent of the
parameters θ, which leads to

EQ-TARGET;temp:intralink-;e003;63;264 ln½prðgjθÞ� ≅ −1
2

½g − ḡðθÞ�tK̄−1
g ½g − ḡðθÞ� þ ln½prðθÞ�: (3)

Thus, the scanning linear estimator that maximizes the pos-
terior density under these approximations is equivalent to

EQ-TARGET;temp:intralink-;e004;63;201θ̂SLðgÞ¼ argmaxθfḡðθÞtK̄−1
g g−

1

2
ḡðθÞtK̄−1

g ḡðθÞþ ln½prðθÞ�g:
(4)

The first term is a linear operation applied on the testing
image data by ḡðθÞtK̄−1

g from the training data set. The second
term is a shifted term due to the different parameters θ. The third
term prðθÞ is assumed to be a flat prior, where all values of θ are
equally likely. Thus, this third term is a constant, independent of
θ, and ignored. So, the final equation becomes

EQ-TARGET;temp:intralink-;e005;326;752θ̂SLðgÞ ¼ argmaxθ½ḡðθÞtK̄−1
g g −

1

2
ðθÞtK̄−1

g ḡðθÞ�: (5)

This observer operates on the data linearly, even though, in
general, the linear template is a nonlinear function of θ. In the
estimation process, the observer seeks the value of θ that will
maximize this linear operation and give the estimated parameter
θ̂SL;θmax

.

2.2 Channel Selection and Channelization

As mentioned earlier, we chose to use the CSLO to perform our
combined detection/estimation tasks. This observer model has
the benefit of being computationally practical and also relevant
in terms of approximating human-observer performance. Many
observer models, including the CSLO, require the estimation
and inversion of a covariance matrix. The size of the regions of
interest (ROI) patches in our study is M ¼ 100 × 100 pixels.
The minimum number of sample images to achieve an invertible
estimate of an M ×M covariance matrix is M þ 1. To make the
inverse of a covariance matrix practical, we reduce the dimen-
sion of dataset through channelization. The channels selected in
our study are 10 dense-difference of Gauss (DDOG) chan-
nels.15,16 The 10 DDOG channels employed in this study
have been demonstrated to match the human-observer behavior
in signal-detection tasks16 for radially symmetric signals. In
addition to reducing the dimension of the covariance matrix,
DDOG channels also have been proved to have a property of
mimicking human visual system15,16 in the pure detection
task. These channels have not been verified to match human-
observer performance when used in a scanning observer as
we are using them in this work. However, we chose to use
this observer model, because the channels are based on the
human visual system, even if the scanning mechanism is not.

The channelization process maps the image onto the chan-
nels. This process can be expressed as

EQ-TARGET;temp:intralink-;e006;326;360gch ¼ Ttg; (6)

where the superscript ch and t refers to channelized data and
transpose, respectively, and T is the channels. The dimension of
g isM, which, for this study, is 1002. The dimension of gch is 10
for the 10 DDOG channels. Thus, the minimum number of train-
ing images to achieve an invertible estimate of the covariance
matrix is 11. The channelized image data gch is used as input in
Eq. (5), and the final equation for CSLO in this study becomes

EQ-TARGET;temp:intralink-;e007;326;251

θ̂CSLðgÞ ¼ argmaxθ½ḡch;training2 ðθÞTK̄−1
ḡch;training
2

gch;training

−
1

2
ḡch;training2 ðθÞTK̄−1

ḡch;training
2

ḡch;training2 ðθÞ�; (7)

where ḡch;training2 ðθÞ is the average of signal-present image from
training image dataset [Eq. (8)], K̄−1

ḡch;training
2

is the covariance
matrix calculated from ḡch;training2 ðθÞ and averaged over different
signal parameter vectors θ [Eqs. (9) and (10)], and gch;testing is
either a signal-present or signal-absent image. The second term
in Eq. (7) is independent of testing data, but it has to be retained
since it is θ dependent.
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2.3 Tasks and Test Statistics

The CSLO was designed for pure estimation tasks but can be
readily extended to include detection by including the value of
the maximum in Eq. (7) as the test statistic. Thus, the test
statistic that is used to decide whether the signal will be called
present or not is the maximum of Eq. (7) instead of the argu-
ment maximum. This is similar to the scanning Hotelling
observer.17,18 Note here that if gch;testing in Eq. (7) is a sig-
nal-present image, then the test statistic generates a random var-
iable as tCSL;2; on the other hand, if gch;testing is from signal-
absent image pool, then the test statistic generates a random var-
iable tCSL;1. A decision that the signal is present is made when
the test statistic is greater than the test-statistics threshold; oth-
erwise, the observer decides that the signal is absent. For com-
bination tasks that include detection and estimation, the CSLO
scans parameters in the parameter domain to search for θ that
maximizes Eq. (7). θ is a parameter vector including locations,
sizes, and contrasts of signals. When the estimated parameters
θ̂CSL, the output of Eq. (7), are equal to the true parameters θtrue,
the estimation is counted as being correct.

Note that the implementation of Eq. (7) is potentially non-
linear in θ but is linear in the image data. Thus, we refer to
the implementation of Eq. (7) as an EROC template where
the template itself depends on the parameters to be estimated
(e.g., location, size, and contrast). To implement location esti-
mation, we crop the EROC templates down (Fig. 1) to exclude
the mostly zero portions of the template. This increases compu-
tational efficiency substantially. The cropped EROC template
contains all of the information of original image template but
with smaller size. With this approximation, a cropped EROC
template was scanned at every possible location and for every
possible value of size and contrast on every testing image. There
were 41 × 41 possible locations, 5 possible sizes, and 4 possible
contrasts in the signal-present images. A statistics map (Fig. 2)
was generated after the cropped EROC template was scanned
over a single testing image. If the test statistic is above threshold,
the observer model then chooses the location of signal based on
the highest pixel value in the statistics map and estimates the
size and contrast for the given signal in the testing image based
on the value of θ. For signal-present images, if the difference

between the estimated location and the true location (the center)
was less than location threshold (the radius of the smallest sig-
nal) and the estimated size and contrast were equal to the true
values, this combined detection and estimation was considered
successful. According to the test-statistics thresholds, two test
statistic distributions (tCSL; 2, tCSL; 1) and the results of estima-
tion, an estimation receiver operating characteristic (EROC)
curve19 can be generated. The area under the EROC curve
(EAUC) value is the figure of merit used in this study. The
higher the EAUC value, the better the image quality of the sys-
tem under the combination of detection and estimation tasks.

2.4 Training, Testing, and Variance Estimation

The training data are used to estimate the parameters that define
the model observers, i.e., the means and the covariance matrices.
As mentioned before, although the minimum required training

Fig. 1 Templates: (a) original EROC template and (b) cropped EROC template. The cropped EROC
template is used for scanning on the spatial domain for signal-location-unknown tasks.

Fig. 2 Example of a test statistic map. After cropped EROC template
of one specific signal scanned on all possible locations of a signal on a
testing image, a statistic map associated to this testing signal is gen-
erated. The highest pixel value (brightest spot) in this map indicates
the estimated location of the testing signal.
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samples’ size is 11, to have more accurate estimate statistics,
200 samples were used for training and 300 samples were
used for testing. For the CSLO, the training dataset is used
to estimate ḡch;training2 ðθÞ, and K̄ḡch;training

2

, and the equations are
given by

EQ-TARGET;temp:intralink-;e008;63;697ḡch;training2 ðθÞ ¼ 1

N

XN
i¼1

gch;training2;i ðθÞ; (8)

EQ-TARGET;temp:intralink-;e009;63;649

Kḡch;training
2

ðθÞ ¼ 1

N

XN
I¼1

½gch; training2;i ðθÞ − ḡch;training2; ðθÞ�

× ½gch;training2;i ðθÞ − ḡch;training2 ðθÞ�t; (9)

EQ-TARGET;temp:intralink-;e010;63;586K̄ḡch;training
2

¼ 1

number of θ
X
θ

Kḡch;training
2

ðθÞ: (10)

Once these parameters were estimated, the testing images
were substituted into Eq. (7) to estimate the EAUC values.

There are several ways to estimate the variance of the EAUC:
bootstrap,20 jackknife,21 and shuffle22 methods. They all have
been studied previously.23–28 In this work, the variance of
EAUC values is estimated by a completely nonparametric
and unbiased approach, referred to as the Barrett–Clarkson–
Kupinski method or the one-shot method.29 This variance-esti-
mation method is a variant of the original Dorfman–Berbaum–

Metz technique30–32 but does not rely on resampling techniques.

2.5 Computed Tomography Iterative Reconstruction
Approach Studied in this Work

To achieve good image quality at low flux CT imaging condi-
tions and maintain reconstruction speeds comparable to FBP, we
have designed an IR approach that de-emphasizes the system
optics modeling. Imaging-chain statistical noise modeling,
physics modeling, and object modeling have been included
in this IR algorithm. The detailed description of this algorithm
will be presented in a future publication. The focus in this paper
is to apply the model observer approach designed above to quan-
titatively evaluate the dose saving or image quality improvement
capability of this IR algorithm developed in house.

2.6 Phantoms, Data Acquisition, and Generation

In this work, low contrast (LC) objects embedded in the Medical
Imaging Technology Alliance (MITA) CCT 189 phantom
(Medical Imaging and Technology Alliance constructed by
the Phantom Laboratory) were imaged on a GE Discovery
CT750 HD CT system. Examples of signal-present images
are shown in Fig. 3. In this study, the MITA phantom was
used for signal detection and signal size and contrast estimation
task. The properties of LC objects in this phantom are listed in
Table 1. Only axial scans were used in this work. The large body
bowtie was used for the MITA CT IQ LCD phantom with the
body ring attached. The slice thickness was 0.625 mm, and the
collimator aperture used was 20 mm.

In this study, the x-ray tube current was varied to achieve
different radiation dose levels. For each dose level, 50 identical

Fig. 3 Examples of images used for combination of detection, size and contrast estimation task. All of the
images shown are the averaged results of 500 FBP images. The various signal parameters are: (a) 3 mm
14 HU, (b) 5 mm 7 HU, (c) 7 mm 5 HU, (d) 10 mm 3 HU, (e) 15 mm 14 HU, (f) 15 mm 7 HU, (g) 15 mm 5
HU, and (h) 15 mm 3 HU.
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scans were acquired. A total of 10 signal-present and signal-
absent ROI pairs were extracted from different longitudinal
locations (along the CT system table direction) from each scan.
The 50 scans and 10 extracted ROI pairs per scan resulted in 500
individual ROI pairs for each LC object at every dose level.
Images were reconstructed at a field of view 180 mm with a
matrix size of 512 × 512 image pixels. A random order of
500 images was split into training and testing image datasets.
The same randomized sequence was used for every study. The
center of each signal was determined by analyzing the mean
image. The signal was always in the center of the ROI, and the
signal-absent ROIs were extracted from regions distant from the
signals to avoid any overlap between signal-present and signal-
absent ROIs.

For each object and dose level selected, there were 500 in-
dependent signal-present and signal-absent image pairs. These
image pairs were randomly split into 200 pairs for training and
300 pairs for testing in the observer study. EROC curves for the
combined detection and estimation task were generated, and the

corresponding areas under the curves were calculated. As men-
tioned above, the variances of EAUC values were estimated via
the one-shot method.29

3 Results
FBP and IR were compared for different tasks. Quality-dose
characteristic (QDC) curves33 (Fig. 4) were generated by plot-
ting different dose levels and their associated EAUC values for
both FBP and IR algorithms. For each task, 50 scans were made
for each dose level and there were 10 different dose levels as
shown in Fig. 4. The results show that the QDC curve of IR is
higher than that of FBP at all dose levels. It suggests that the IR
is better than FBP in terms of image quality at the same dose
level. A comparison could also be made across dose levels for an
equal EAUC value. This comparison indicates that the required
dose level is lower for IR than FBP to achieve the same image
quality. Based on these QDC curves, achievable dose reduction
can be easily derived. All objects in the MITA phantom were
scanned axially for all experiments using the parameters men-
tioned above, and signal-location-unknown detection, size, and
contrast estimation were performed.

Because the location of signal is unknown for the observer,
the observer had to localize the signal in the provided testing
image first and followed by estimating the size and the contrast
of the signal. As mentioned in Sec. 2, the location threshold is
about the radius of the smallest signal. The total number of pos-
sible locations for signals is 41 × 41. Thus, similar to signal
location known study, the guessing value of EAUC is given by

EQ-TARGET;temp:intralink-;e011;326;443

1

2

the area of a circle of radius equal to the location threshold

the number of objects× the number of possible locations
;

(11)

which, for this problem, is 0.0021. The result indicates that a
50% dose reduction could be achieved using the IR algorithm.
EROC curves are shown in Fig. 5. The significant difference

Table 1 MITA body phantom signal parameters.

Object Diameter (mm) Contrast relative to background (HU)

1 3 14

2 5 7

3 7 5

4 10 3

5 15 14

6 15 7

7 15 5

8 15 3

Fig. 4 An example of QDC curve for the task of signal detection, localization, and estimation of size and
contrast.
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(p < 0.01) between the EAUC value of IR low dose and FBP
low dose is shown in Fig. 6.

The improvement of image quality of IR is substantial. This
improvement not only helps observers to determine if tumors
exist and where the tumors located relatively correctly but
also helps observers to distinguish the physical properties
such as the size and the contrast of the targeted lesion easily.

4 Discussions and Conclusions
Different IR algorithms have been designed on CT systems to
assist the patient radiation dose reduction. The nonlinearity
nature of both the CT system and an IR algorithm makes the
assumptions of a linear and shift-invariant system far from valid.
Thus, conventional image-quality metrics such as modulation
transfer function, noise power spectrum, and detective quantum
efficiency while well-suited for characterizing detector perfor-
mance, are not well-suited for overall CT image quality evalu-
ation. In view of this, mathematical model observers have been
selected as surrogates to study the task-based image quality per-
formance of CT imaging systems. In this work, we used CSLO
to measure the image quality under a more realistic task, the
detection, and estimation, at different dose levels for two differ-
ent reconstruction methods. Radiation dose levels required for
LC object detection and estimation in body phantoms were

examined and evaluated quantitatively. This work provides an
objective way to assess the image quality of CT imaging systems
for dose saving evaluation. However, unlike pure detection
tasks, currently there is no proper way of adding internal noise
in the combination of detection and estimation tasks so internal
noise was not used in this study. Our results provide the upper
bounds of observer studies.

In this study, different combinations of clinically relevant
tasks were considered and evaluated by CSLO. Our results sug-
gest that CSLO could be used as an image quality assessment
tool for performance evaluation of CT imaging systems. Future
works include the addition of internal noise, correlation with
human-observer performance, and head mode phantom evalua-
tions. In addition, we note that conclusions drawn from this
study must be tempered by the fact that the phantom is uniform.
Thus, adding anatomical variability, possibly through the use of
real patient data, will be a possible topic in the future. Addition-
ally, having more signals of different sizes and contrasts in the
new design of phantom is in the future plan as well. On the other
hand, this method currently is still time-consuming and requires
numerous images. To make this method more practical, further
design of the CSLO using fewer images is needed and work has
progressed in this area.34 Much like the differences in dose sav-
ings we observed when the tasks were made more complex, we
expect that there will be differences in the performance when
anatomical variability and more complicated signal models are
used.

In this study, we evaluated the performance of FBP and an IR
algorithm. Our results indicate that the IR algorithm can make a
significant dose reduction without compromising image quality.
According to our results, the performance of the IR algorithm
shows that the noise has been decreased greatly compared to the
traditional FBP algorithm for all of the combinations of detec-
tion and estimation tasks. Approximately 50% dose reduction
can be achieved using this IR algorithm for tasks that combine
signal-location-unknown detection and estimation of signal size
and contrast. Thus, to achieve the same image quality, the IR
algorithm requires less x-ray radiation exposure to patients. To
provide this benefit of lower radiation dose to patients, our
results support the use of IR in clinical CT. Further study is
needed with anatomical variability, real data, and even more
complicated tasks to further validate this dose-reduction claim.
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