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Abstract. Previously, magnetic induction tomography (MIT) has been considered for noncontact imaging of
human tissue electrical properties. Commonly, multiple coils are used, with any one serving as the source
while others detect eddy currents generated in the specimen. Here, imaging of low conductivity objects is
shown feasible with a single coil acting simultaneously as source and detector, provided that the coil is repeat-
edly relocated while collecting coil loss data. To enable such “scanning,” an analytical coil loss formula is derived
in the quasistatic limit for a single coil consisting of several concentric circular wire loops, all within a common
plane. Conductivity may vary arbitrarily in space, whereas permittivity and permeability are treated as uniform.
The analytical form is used to build an algorithm for imaging electrical conductivity in human tissues. A practical
device operating at 12.5 MHz is described and used in a clinical trial that “scans” the region between the scapu-
lae while collecting coil loss data. Inversion of data leads to electrical conductivity distribution images for the
thoracic spinal column which are the first of their kind to correctly distinguish such basic features as size and
depth of spinal canal, as well as size, depth, and spacing of transverse spinal processes. © The Authors. Published by
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1 Introduction
Electrical properties within the human body, primarily permit-
tivity and conductivity, vary spatially due to natural contrasts
created by fat, bone, muscle and various organs.1 In addition,
various disease states are known to cause changes in electrical
properties. For example, Haemmerich et al.2 showed that hepatic
tumors exhibit elevated in vivo conductivity compared to normal
tissue. Using skin electrodes to make impedance measurements,
Songer3 demonstrated that muscle tissue impedance dropped at
the linear rate of 0.148 ohm∕min during tourniquet “surgery,”
intended to induce ischemia (see Ref. 3, Table 8.1, 0.8 < R2 <
0.99). For these reasons, considerable effort has been made to
devise strategies to image electrical property contrasts, espe-
cially through means not involving physical contact. Though
magnetic induction tomography (MIT) is perhaps the most
common no-contact approach currently under development,4

other no-contact methods have also attracted interest, such as
noise tomography which attempts to image electrical conduc-
tivity by using MRI coils to detect and process the spatial varia-
tion of thermally induced electronic noise developed within
conductive tissues.5

To help further motivate the need for MIT, we note that our
interest here at Kimberly-Clark lies in a desire to have a low-
cost, portable approach for imaging tissues in the immediate
vicinity of an implanted medical device, such as an endotracheal
tube or gastrostomy tube. An inexpensive imaging method with
even moderate resolution could quickly ascertain proper posi-
tioning of the device, as well as the onset of possibly adverse
effects of the device on tissues, such as the development of

ischemic conditions due to excessive tissue pressure. A second
application of MIT, perhaps more likely to see wide use,
involves the low-resolution imaging of pressure-induced ulcers
or bed sores which have been shown to result from pressure-
induced ischemia in tissues.6 Assuming that such ischemic con-
ditions cause an elevation of electrical conductivity, as sug-
gested by the low-frequency results of Songer3 (<1 MHz), then
MIT could offer a way to evaluate at-risk patients for early onset
of pressure ulcers. In an effort to establish a connection between
ischemia and elevated conductivity at frequencies exceeding
10 MHz, Feldkamp and Heller7 used a simpler version of the
device described herein to show increased conductivity in
human extremities when elevated for 60 s—meant to produce
a mild level of ischemia. In particular, their results showed
increased conductivity change in response to elevation change
at the right mid-volar forearm that became more pronounced in
subjects exhibiting low blood pressure (Figs. 3 and 4).

Most commonly, MIT imaging techniques involve placement
of a large number of coils near the sample and an attempt to
build an image based upon the measured mutual inductance
of coil pairs within an array placed near the object.8,9 Some
authors have indicated a desire to reduce the number of coils,
with one approach calling for the repositioning of either the coils
in the array or the object itself.10 Whether MIT uses many or few
coils, improved imaging calls for as many measurements as pos-
sible. With that as an incentive, research reported here aims to
accomplish the task of MIT imaging with just one coil, function-
ing as both source and detector. A single coil is given RF exci-
tation at a fixed frequency while the coil’s ohmic loss due to
inductive coupling with the sample is measured. The intent is
to allow the single coil to be sufficiently mobile that it can
be rapidly placed into a very large number of locations and*Address all correspondence to: Joseph R. Feldkamp, E-mail: jrfeld@kcc.com
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orientations, all while data collection proceeds. Inversion of data
into a conductivity image would follow the completion of a
physical “scan” which further helps to localize the target for
meshing purposes.

In order to accomplish such a task, it is helpful to have a
quantitative analytical model that establishes a clear relationship
between an electrical property and a measured coil property. The
only coil property we strive to compute from theory is ohmic
loss resulting from inductive coupling between coil and object.
To reduce the level of difficulty, we develop a solution of
Maxwell’s equations for an arbitrary conductivity distribution,
but we consider permittivity and magnetic permeability as spa-
tially uniform. As shown by Harpen,11 who considered the inter-
action of a conductive sphere with an EM field produced by a
Helmholtz coil, permittivity will only have an effect on the
imaginary part of coil impedance change, which is discarded
here. Thus, even though our samples are expected to exhibit
nonuniform permittivity, this is not expected to hamper efforts
to measure ohmic loss. For example, Harpen11,12 showed only
small effects on coil self-resonant frequency as long as coil-sam-
ple contact is avoided. “Detuning,” resulting from capacitive
coupling, was no more than 0.1 MHz at a 60 MHz excitation
frequency.

Our coil geometry is kept as simple as possible—a collection
of concentric circular loops, all lying within a common plane
and connected in series, with the transient current considered
to have the same value at all points along the loops. With a
4-cm diameter, the typical loop size is quite small compared
with the wavelength (24 m) at 12.5 MHz, the intended operating
frequency. A single current loop consisting of infinitely thin
wire, placed parallel to a uniformly conductive half-space,
has been treated analytically using a separation of variables
approach by Zaman et al.13 Their solution was developed pri-
marily for calculations involving metals and so was specialized
further for the case of high conductivity. Here, the conductivity
distribution is permitted to vary arbitrarily in space while a sol-
ution for the electric field is pursued in the limit of small con-
ductivity (<10 S∕m), though higher conductivity is acceptable if
the frequency is lowered. This leaves us with the task of solving
a partial differential equation (PDE) for the electric field and
then computing ohmic loss. With the formula in hand, compari-
son with experimental results is shown for the case of a coil
consisting of five circular loops placed into each of two very
closely spaced planes (0.5 mm plane separation), for a total
of 10 loops placed on a two-layer printed circuit board
(PCB) and connected in series. Model assumptions are realistic
provided loops of the coil do not come into intimate contact with
the dielectric, enabling capacitive coupling. Close contact to a
dielectric and close spacing of loops within a plane are expected
to lead to capacitive as well as inductive losses—only the latter
is desired.

With the goal of demonstrating the feasibility of imaging
using a single induction coil in a scanning mode, the agenda
of this paper is as follows: a brief overview is provided of
the analytic formula which facilitates mapping between electri-
cal conductivity distribution and coil loss measurements—the
full details are given in Appendix E; a description of coil loss
measurements for the proposed coil geometry is given; a com-
parison is made of loss measurements with predictions of loss
from the analytic formula while the coil is placed at known dis-
tances from a tank of aqueous potassium chloride; next, the pro-
cedure for solving the inverse problem, starting with a set of loss

measurements and culminating in an electrical conductivity
image, is presented; the inversion algorithm is then tested
using a prescribed conductivity distribution that mimics size fea-
tures expected for the thoracic spinal column; finally, clinical
results are given to demonstrate preliminary “proof of concept”
for the single-coil, scanning MIT imaging strategy by imaging a
portion of the thoracic spinal column where natural electrical
property contrasts exist between muscle and bone tissues.

2 Arbitrary Conductivity Analytical Solution
for Inductive Loss in a Multiloop Coil

For an RF-driven coil consisting of concentric, circular wire
loops, all lying in the same plane, Maxwell’s equations may
be solved in the quasistatic limit, leading to a solution that is
valid for an arbitrary electrical conductivity distribution. Loops
are connected in series, each carrying the same sinusoidal cur-
rent. Assumptions required to build a solution for the electric
field are that permittivity and permeability are uniform, electric
charge is uniform, conductivity is isotropic and small (≤10 S∕m),
and loop wires have infinitesimal radii. The electric field can
then be used to compute the EMF developed in the coil and
associated impedance change due to coil-object inductive cou-
pling. As developed in greater detail in Appendix E, coil loss (or
the real component of impedance change) is given as a sum of
integrals:

δZre ¼ −
μ2ω2

4π2
X
j;k

ffiffiffiffiffiffiffiffiffi
ρjρk

p Z
d3x

σ̆ð~rÞ
ρ

Q1∕2ðηjÞQ1∕2ðηkÞ:

(1)

Arguments for the toroid (or ring) function Q1∕2 lie in the
interval 1 < η < ∞, and are related to field position by

ηj ¼
ρ2 þ ρ2j þ z2

2ρρj
; ηk ¼

ρ2 þ ρ2k þ z2

2ρρk
: (2)

With the coordinate system origin located at the center of the
set of concentric loops and Z-axis normal to the plane of the
loops, other symbols in Eq. (1) are listed here

σ̆ð~rÞ: Electrical conductivity (real part) at field posi-
tion: ~r ¼ x; y; z

ρk: Cylindrical radial distance from coil axis to wire
loop ‘k’

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
: Cylindrical radial distance from coil axis

to field point
μ: Magnetic permeability—considered uniform
ω: Angular frequency.

The ring function is readily evaluated using the hypergeo-
metric series form as given in Appendix C, so that Eq. (1) pro-
vides a mapping between coil loss measurements and the
conductivity distribution. As shown in Secs. 3 and 4, which
focus on coil loss measurement, Eq. (1) gives a quantitative pre-
diction of loss for a known conductivity distribution. As a result,
Eq. (1) can be used to simulate measurements of coil loss for any
coil position or orientation, providing a measurement set which
can then serve as a starting point for the evaluation of inversion
algorithms based upon Eq. (1) —an example is given in Secs. 5
and 6. The remaining sections then explore the feasibility of
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single-coil, scanning MIT imaging with a particular choice of
inversion algorithm based upon Tikhonov regularization. The
small clinical discussed in Sec. 7 shows preliminary feasibility
of the approach by manually scanning the interscapulae region
for six subjects, followed by inversion of data to produce images
of the thoracic spinal region.

3 Coil Geometry and Coil Loss Measurement
Coils built to test the theory consist of a total of 10 concentric,
circular loops. Five loops are placed in an upper plane, stacked
0.5 mm above a lower plane also consisting of five identical
loops. Circular loop radii are set at 4, 8, 12, 16, and 20 mm
in either plane. Figure 1 shows the essential geometry of the
stacked sets of loops, created with the help of the CAD module
in FEKO (EMSS, Inc.) using “equivalent” wire segments
(equivalent in the sense that segment diameters are assigned
so that segment perimeter matches the actual PCB trace perim-
eter). The loops consist of 1 or 0.5 mm widths, 2 oz. copper
traces on a multilayer PCB (1.5 mm thick), wired in series as
shown in the figure. The smaller radial traces used to connect
the loops in series are arranged so that current flow in the upper
set of connectors is opposite to the current in the lower set of
connectors, with the intent that radial connectors contribute
nothing to the field. Ideally, the field produced by the stacked
loops is only that due to the circular traces. Perfect circular loops
were preferred over spirals since spirals do not match theory
nearly as well as circular loops, especially as spacing grows.

Furthermore, the inner loop of the lower layer (facing the
specimen) is connected to the instrument common, whereas
the inner loop of the upper layer is connected to the excitation.
Coloration on loops (see Fig. 1) represents the amount of charge
developed on coil wires, as computed from a simulation using
the method of moments’ code known as FEKO (EMSS, Inc.).
Inner loop charging is the highest, since the potential difference
between the innermost loops of the two layers is greatest. Using
a network analyzer, coil capacitance was measured to be about
14 pF (0.5 mm trace width) or 20 pF (1.0 mm trace width).
Intrinsic coil capacitance causes no particular issues inasmuch
as additional capacitance is added anyway in the form of a
varactor to provide a means to tune the tank circuit. Capacitive
coupling with the target, however, is another issue. Though the
development of additional capacitance across the coil due to

specimen proximity is acceptable, the appearance of losses asso-
ciated with the additional capacitance is not.

An equivalent circuit can be used to represent the coil in
order to facilitate measurement of ohmic loss in the coil. Here,
we represent the coil as a series combination of ideal inductance
L and ideal resistance R, which is then placed in parallel with
ideal capacitance C—Appendix A gives a schematic of the
equivalent circuit. Capacitance is mostly due to the interaction
of loop segments with each other. However, capacitive coupling
with the material can happen but would only constitute a prob-
lem if there were associated losses. An expression for circuit
admittance Y (reciprocal of impedance) can be easily written
down for the proposed equivalent circuit. Since ohmic loss is
expected to be very small, we specialize to the case that
R ≪ ωL, where ω is angular frequency:

Y ¼ R
ω2L2

þ i

�
ωC −

1

ωL

�
. (3)

Only the real part of admittance is of interest, so that the loss
R can be measured as

R ¼ ω2L2Yre. (4)

Note that R is the quantity that varies in response to eddy
current generation within the space occupied by a conductive
medium. A variety of ways exist to measure admittance. We
use an AD8302 phase and gain detector from Analog Devices
to simultaneously measure phase angle (between voltage and
current) and voltage gain—the ratio of voltage across the coil
to voltage across a precision sense resistor placed in series
with the coil. The AD8302 measures gain by the use of a
matched pair of demodulating log amplifiers having a 60 dB
range. Appendix D shows a portion of the analogy circuitry
needed to provide excitation to the AD8302. From gain and
phase, computing the real part of admittance either at or off res-
onance is straightforward. Note that the real part of admittance is
independent of capacitance, which is fortunate since some
amount of capacitive coupling can be expected when the
coil-specimen distance is small. Moreover, by placing a tunable
varactor in parallel with the coil, the circuit can be tuned to any
convenient point for measurement without affecting Yre.

We have measured Yre both at resonance (minimum admit-
tance) and at arbitrary points off resonance, obtaining the same
result either way. Most commonly, off-resonance measurement
is used here, at a phase angle of about −60 deg. Inasmuch as
loss R contains contributions intrinsic to the coil as well as from
inductive coupling with a nearby conductive specimen, a free-
space value for R must first be determined and subtracted from
all subsequent measurements. All experiments were performed
using a fixed frequency, crystal controlled excitation at 12.5MHz.
Typically, admittance measurement precision is about 0.02 μS
while the span of admittance, from free space to within about
3 mm of human tissues, is about 12 μS—free space admittance
is 112.55 μS. Though precision is very good, drift during 10 min
of instrument warm-up was a nominal 0.05 μS∕min. To manage
drift, appropriate time was allowed for instrument warm-up.
Furthermore, free-space admittance values were obtained before
and after a set of measurements and then used to supply a back-
ground correction based upon some estimated amount of time
per measurement. A photo of electronics, coil, and enclosure is
shown in Appendix A.

Fig. 1 Geometry of two-layer, multiloop coil used for MIT imaging;
loop radii—4, 8, 12, 16, and 20 mm; segment charges are shown
for case with 1 V excitation at 12.5 MHz; 84 pF of capacitance and
20 kΩ of resistance were placed in parallel with the coil to resonate
at 12.26 MHz; segment diameters were set at 0.6 mm to give a perim-
eter equivalent to that of a 1 mm, 2 oz. Cu PCB trace.
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To implement Eq. (4), coil inductance is required. For loops
of different radii, the mutual inductance contribution to overall
coil inductance was computed from an equation given by
Conway,14 rewritten here in a form that uses the zero order,
half integer degree toroid function:

Mjk ¼ μ
ffiffiffiffiffiffiffiffiffi
ρjρk

p
Q1∕2

�
ρ2j þ ρ2k
2ρjρk

�
; j ≠ k. (5)

Loop radii are given by ρj and ρk, while magnetic permeabil-
ity is given by 1.2566 μH∕m. The toroid function is available
from tables or easily computed from a hypergeometric series.
If the self-inductance of any individual loop j is given by Lsj,
then the mutual inductance between pairs of loops with the same
radius, but in different layers, was just taken to be Lsj—in other
words, the coupling constant is taken as unity. Self-inductance
of individual loops was computed from simplified equations
given by Terman,15 using a “wire” diameter having a circular
perimeter equal to the trace perimeter. PCB traces are built at
a width of either 1.0 or 0.5 mm using 2 oz. copper, equivalent
to about 0.0694 mm thickness. Based upon equivalent perim-
eter, a 1.0 mm trace has an equivalent circular wire diameter
equal to 0.68 mm and a 0.5-mm trace width has an equivalent
diameter of 0.36 mm. The average of these two is close to
0.5 mm, which is the wire diameter used for the inductance cal-
culation of either coil. According to the circular loop model,
smaller diameter conductors will give a somewhat larger induct-
ance, which agrees with network analyzer measurements.
Overall, inductance of the 10-loop coil consists of

L ¼
X5
j¼1

4Lsj þ
X5
j;k¼1

2Mjk; j ≠ k: (6)

Inductance computed in this way was found to be 2.155 μH.
Inductance was also measured on an Agilent network analyzer by
first obtaining the self-resonant frequency of the coil, and then a
second time when placed in parallel with a precision capacitor
(�5%). From the two resonant frequencies, L was computed
to be 2.132 μH. The uncertainty in the ceramic capacitor, com-
bined with the effects of added solder and capacitor leads, on both
inductance and capacitance, makes the network analyzer result
less reliable than the computed inductance—so the latter is
used for both coils. However, the difference is only 1% which
validates the inductance computation quite well.

4 Comparison of Theory and Experiment for
10-Loop Planar Coil

Equation (1) may be used to compute coil loss when the planar
coil is placed at various distances away from a plastic tank filled
with aqueous potassium chloride. The plane of the coil was kept
parallel to the liquid surface (within �0.5 deg) and placed at
various distances from the liquid surface using a precision
XYZ translator (Newport Universal Motion Controller/Driver
Model ESP7000; equipped with M-MTM 150 CC1 motorized
stage, capable of 150 mm of travel and 1.0 μm precision). In
spite of superb translator precision, the measurement accuracy
of coil-liquid-surface distance was about �0.5 mm. Critical to
imaging applications is the requirement that theory and experi-
ment match nearly exactly or at least to within a known scale
factor. This was tested for two variants of coil geometry; the
only difference between these two is the trace width, 1 or 0.5 mm.

Using an XYZ translator to change the elevation of a
mounted coil placed above a 30 × 30 × 13 cm3 deep tank of
aqueous KCl, admittance change relative to free space was mea-
sured and then used to compute inductive loss according to
Eq. (4). This was then compared to the same quantity computed
from Eq. (1), which is equivalent to R in Eq. (4). Results for both
coil types are shown in Figs. 2 and 3. Loss from Eq. (1) was
evaluated by using a finite element partition of the tank using
pentahedral elements and nine-point integration. The tank
was only approximately rectangular but was treated as such
in building a finite element mesh.

A conductance probe (sympHony™—VWR) was used to
measure the electrical conductance required by Eq. (1) and
the measured conductance was 2.86 S∕m for the 1.8% KCl sol-
ution (by weight). No data fitting or scaling is used to help
improve fit in Figs. 2 and 3; rather, experimental and theoretical
data are compared “as is.” Equation (1) calculations are only
limited by the assumptions listed in Sec. 1 and numerical
error. Assumptions behind Eq. (1) include small conductivity

Fig. 2 Comparing theoretical predictions from Eq. (1) and (infinite
slab) with measurement on coil with 1 mm trace. No data fitting or
scaling is used here; rather, the comparison is “head-to-head.”

Fig. 3 Comparing a theoretical prediction from Eq. (1) with measure-
ment on coil with 0.5 mm trace. No data fitting or scaling is used here;
rather, the comparison is “head-to-head.” Also included is the infinite
slab result [derivation not included, but similar to Eq. (1)].
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and uniform permittivity throughout all space. The latter
assumption is not at all met by our system since permittivity
abruptly changes at the air-solution interface. But as literature
shows,11,12 lowest order terms developed for the real component
of impedance under nonuniform permittivity conditions [see his
Eq. (21)] do not contain permittivity (or, equivalently, speed of
light). Thus, a uniform permittivity approximation is not an
issue if only conductivity is of interest. The situation is different
when magnetic permeability varies in space, for then the theory
behind Eq. (1) would not be useful for the accurate prediction of
coil impedance. However, magnetic permeability of human
body tissues and salt solutions is not significantly different
from vacuum. Figures 2 and 3 also contain infinite slab results
for a slab having a thickness equal to the finite slab—the infinite
slab equation was derived in a manner similar to Eq. (1) though
no mesh was needed for calculations.

Results for the narrow trace coil show somewhat better
agreement with theory, which is not surprising since the theory
was developed for infinitely thin conductors. The remaining dis-
agreement between theory and experiment arises from several
possible contributions: (1) coil not perfectly parallel with aque-
ous solution interface and vertical positioning accuracy; (2) com-
putation/measurement of coil inductance; (3) admittance
accuracy was judged to be about �0.2 μS, corresponding to
a loss error of �0.006 ohm, as computed from Eq. (4); (4) shape
of container holding the KCl solution was not perfectly rectan-
gular, and no attempt was made to work with the true container
geometry, which was conceivable but time consuming;
(5) numerical errors in computation of loss from Eq. (1)—accu-
racy could be improved by refining the mesh used to discretize
the tank; and (6) short range losses due to capacitive coupling
with target—no estimate was made of this. In either Fig. 2 or 3,
coil loss is shown to decline substantially when coil-target sep-
aration reaches about one coil diameter. However, as Sec. 6
shows, the effective range of coil-specimen interaction can be
up to five coil diameters when a specimen becomes very large.

5 Inversion Algorithm for Single Coil,
Scanning MIT

The intended application of Eq. (1) is the inversion of experi-
mentally obtained coil loss data to form an image of the 3-D
distribution of electrical conductivity for an arbitrary object—
usually one of biological interest, such as human tissues. An
inversion routine is developed using Eq. (1), first by discretizing
some portion, if not all, of the target object on a finite element
mesh. In some cases, discretization of the entire target may be
impractical. Using six-node linear pentahedral elements, electri-
cal conductivity is expanded in a linear basis

σ̆ð~rÞ ¼
XM
m¼1

σ̆mΦmð~rÞ. (7)

Substitution of Eq. (7) into Eq. (1), and writing the integral as
a summation over all elements in the target geometry, yields for
the n’th coil loss measurement:

−δZreðnÞ ¼
XM
m¼1

σ̆m
μ2ω2

4π2
X
j;k

ffiffiffiffiffiffiffiffiffi
ρjρk

p XE
e¼1

Z
Re

d3x
Φmð~rÞ

ρ

×Q1∕2ðηjÞQ1∕2ðηkÞ;
n ¼ 1;2; 3 ··· N: (8)

Summation in Eq. (8) is overM nodes and E elements. Each
of the measurements, n, involves a different position or orien-
tation of the coil and thus affects how ρ, ηj, and ηk are evaluated.
Elemental integrals, after multiplication outside by the square
root factor ffiffiffiffiffiffiffiffiffi

ρjρk
p , have dimensions of volume. Element integra-

tions here are six-point, eight-point or nine-point, with only
minor differences observed between those choices in most
cases. Integrals are transformed to the local element coordinate
system, i.e., in terms of area coordinates and a third coordinate
spanning element height, −1 ≤ ξ ≤ 1. In order to evaluate the
functions under the integral, consisting of ρð~rÞ, Q1∕2½ηjð~rÞ�
and the basis functionΦm, it is necessary to determine the global
coordinate system vector ~r that locates each integration point,
and then determine from ~r the vector locating the same integra-
tion point from the point of view of the coil coordinate system.
Axes in the coil coordinate system need not be aligned with the
others.

Equation (8) can be written as a matrix equation—N equa-
tions (or loss measurements) and M unknowns (nodal electrical
conductivities):

~Zn ¼ T̃nmσ̆m. (9)

The matrix T̃nm has elements:

T̃nm ¼ μ2ω2

4π2
X
j;k

ffiffiffiffiffiffiffiffiffi
ρjρk

p XE
e¼1

Z
Re

d3x
Φmð~rÞ
ρn

Q1∕2ðηnjÞQ1∕2ðηnkÞ.

(10)

Note that the index “n” is attached to toroid function argu-
ments, and ρn, to indicate that determination of these quantities
is dependent on coil position and orientation. Though not ideal,
the number of coil position-orientations selected for making
coil-loss measurements will likely be less than the number of
mesh nodes so that system (10) will be underdetermined.
Regardless, the equations are solved in a least-squares sense
while conductivities are forced to be non-negative. Further-
more, it is highly desired to penalize those solutions that involve
very rapid changes in electrical conductivity since those solu-
tions are not as likely. As a result, resolution will be limited
by smoothing and element size. To penalize steep gradient sol-
utions, a gradient matrix is defined from interpolation functions
as

G̃3e;m ¼

2
66664

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ∂Φ1

∂x
∂Φ2

∂x ⋅ ∂Φ6

∂x ⋅
⋅ ∂Φ1

∂y
∂Φ2

∂y ⋅ ∂Φ6

∂y ⋅
⋅ ∂Φ1

∂z
∂Φ2

∂z ⋅ ∂Φ6

∂z ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

3
77775. (11)

From the gradient matrix, conductivity gradient components
within elements are readily computed:

2
66664

⋅
∂σ⋅

∂x je
∂σ⋅

∂y je
∂σ⋅

∂z je
⋅

3
77775 ¼ G̃3e;m

2
66664

⋅
σ
⋅
m

σ
⋅
mþ1

σ
⋅
mþ2

⋅

3
77775. (12)
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To find a set of nodal electrical conductivities that best
explain the observed coil-loss data, subjected to smoothing,
we minimize the two-norm:

k~Zn − T̃nmσ̆mk22 þ α2kG̃3e;mσ̆mk22. (13)

As the smoothing parameter, α, is decreased, the first term
becomes more dominant, thus “sharpening” our focus on any
structure within the conductivity distribution. The approach is
well-known and commonly referred to as Tikhonov regulariza-
tion.16 Assignment of α was discussed by Rudnicki and
Krawczyk-Stańdo,17 who surveyed a variety of regularization
strategies, in particular the L-curve method. This approach con-
structs a log-log plot of the residual norm against the gradient
norm,16 typically forming an L-shaped curve. Choosing α where
a knee in the L-curve forms has been shown to provide a sat-
isfactory compromise between achieving a small residual and
adequate smoothing. The method we use here is a close variant
of the L-curve approach and is described further in Sec. 7.
Minimizing the 2-norm, or Euclidean norm, is equivalent to
solving the following system:

ðT̃T T̃ þ α2G̃TG̃Þσ̆m ≅ T̃T ~Zn. (14)

Equation (14) is solved with the further constraint that solution
components are non-negative. Ideally, Eq. (14) is sufficient for
our needs. However, there are cases where instrumental offset
related to drift and aging should be accounted for. This can
be built into Eq. (14) by adding an additional unknown—the
instrument offset, into row one of column vector σ̆m. This
requires that a new first column of 1’s be added to the transfer,
or translation, matrix ~T. Such a modification will then also
require modification of ~G to have a new first row and first col-
umn of just zeroes. System (14) is solved with the routine
WNNLS (weighted, non-negative least squares), useful only
for small to moderate-sized problems (Naval Surface Warfare
Math Library). WNNLS is more general than is needed here
since equality constraints could be included. Since equality con-
straints are not used, WNNLS is just an NNLS type problem.
The strategy for enforcing non-negativity is the so-called active
set method as discussed in Sec. 3.2 of Haskell and Hanson.18

Though there are variants to this method, active and passive
sets of unknowns are defined—the former set consisting of
mesh nodes which would violate non-negativity and the latter
consisting of nodes with positive conductivity. Through an iter-
ative process described in Sec. 3.2 of their paper, which they
state will always converge, unknowns within the active set trans-
fer to the passive set until a solution is eventually found with all
nodes satisfying non-negativity.

Because few actual measurements were available per subject
in the study described in Sec. 7, preliminary testing with “virtual
measurements” was carried out to assess the feasibility of sin-
gle-coil MIT imaging with fewer measurements than desired.
The next section shows that even with 61 “simulated measure-
ments” (132 per subject used in clinical), structures comparable
in size with the spinal column and canal can be visualized.

6 Imaging a Prescribed Conductivity
Distribution from Simulated Measurements

Because the number of actual measurements per subject in the
clinical study was limited, preliminary testing with simulated
measurements was carried out to assess the feasibility of

single-coil MIT imaging with fewer measurements than desired.
Here, testing with 61 “simulated measurements” is done over a
2-cm thick, 9 × 9 cm2 slab with a conductivity distribution pre-
scribed by

σ̆ðx; y; zÞ ¼ 2 − sin2ðx∕3Þ − sin2ðy∕3Þ
þ exp½−ðx − 4.5Þ2 − ðy − 4.5Þ2�. (15)

A simulated measurement consists of using Eq. (1) to com-
pute coil loss for a particular coil position or orientation over the
specimen. These simulated measurements are then used in the
imaging algorithm as though they were actual measurements.

Note that the last term in Eq. (15) is centered on the slab, but
the sine terms are not, which contributes to the asymmetrical
features shown in the central region of Fig. 4. The prescribed
conductivity distribution is meant to contain some asymmetry
as well as structures comparable in size with the spinal column
and canal in order to test inversion algorithm capability.
Simulated measurements were made in just two planes above
the 2-cm thick slab. At 2.0 mm above, 36 measurements: x,
y ¼ 2, 3, 4, 5, 6, 7; at 6 mm above, 25 measurements: x,
y ¼ 2.5, 3.5, 4.5, 5.5, 6.5. Staggering of the coil position
from layer to layer is a good sampling practice. Clearly, the
image inversion result shown in Fig. 5 indicates that such struc-
tures, especially the central “bump” and asymmetry, can be visu-
alized even with fewer measurements than may be desired, and
much less than the number used in the clinical study. Distortion
is greatest toward the corners and edges of the image, where
sampling frequency is less. Contour plots in Figs. 4 and 5
are obtained on a slice at a depth of 0.5 cm beneath the surface.

Of interest is the range of interaction expected between a coil
and nearby conductive sample. Coil-loss results are shown in
Fig. 6 for a square slab, 12-cm thick, and spanning a range
of side dimensions up to 50 cm. Conductivity is set at a nominal
1.0 S∕m within the slabs. The coil consists of five circular, con-
centric loops having radii 0.5, 1.0, 1.5, 2.0 and 2.5 cm and is

Fig. 4 Prescribed conductivity distribution used to create 61 virtual
coil loss measurements using 4 cm diameter, 5-loop coil identical
with that used in the study, over a 2-cm thick slab. Coil positions
for sampling are noted in the text. Contours are shown at intervals
of 0.2 S∕m, with the contour at 0.4 given as reference.

Journal of Medical Imaging 013502-6 Jan–Mar 2015 • Vol. 2(1)

Feldkamp: Single-coil magnetic induction tomographic three-dimensional imaging



placed parallel to the specimen at 1.0 mm above the slab center.
Also shown is the result from a model of a 12-cm thick slab
having an infinite extent along X and Y axes. It is noted here
that the computed loss only becomes asymptotic to the infinite
slab result when the slab dimension reaches about five coil
diameters. Thus, a coil has significant “reach.”

7 Imaging the Thoracic Spine—Clinical
Testing

A number of interrelated reasons conspire to make actual imag-
ing much more difficult. For one, we now need to contend with
measurement noise and inaccuracies—which includes coil posi-
tion and orientation, not just coil ohmic loss. The other is that

the target is generally much larger than what we may wish to
mesh—those nodes that are remote are expected to contribute
far less than those that are near, and the task of accurately appor-
tioning those contributions to measured loss can be daunting.
However, a large number of distant or remote nodes might be
expected to produce a collective response in the coil that is non-
negligible but still very difficult to correctly apportion to those
nodes. Thus, in view of the simplicity of the proposed inversion
algorithm, the extent of target meshing will be limited herein.
Because of the natural variability of electrical conductivity in
the vicinity of the thoracic spine, due to interspersed bone,
muscle, fat and connective tissue, our imaging effort centered
on this location. Another reason is the relative flatness that exists
in the interscapulae region.

Six male subjects, all in good health, were recruited for sin-
gle-coil MIT testing under study number 13–356 as approved by
the New England Institutional Review Board on October 8,
2013. Each subject was required to sign an informed consent
document prior to participation. In order to acquire coil-loss
measurements at a reasonably large number of positions, a very
simple locator-template was constructed to control position-
ing, as shown in Fig. 7. The template was sketched onto two
low density polyethylene (LDPE) sheets, each having about
1.60 mm thickness, one serving as the bottom sheet, contacting
the back, the other as a top sheet. To build distance from the
spine, ethylene vinyl acetate (EVA) foam sheets were progres-
sively added in between the LDPE sheets, each sheet is about
2.0 mm. A total of nine EVA spacer sheets, together with the two
LDPE sheets, allowed us to span from 1.6 mm up to about
21 mm, excluding the 1 mm buildup on top of the outermost
coil trace. Template dimensions are 10.2 × 12.2 cm2. The tem-
plate consists of 12 locations where the coil is centered for coil-
loss measurement. Together with a total of 11 sheets, a total of
132 coil loss measurements were made per subject. While mak-
ing the measurements, maintaining coil axis orientation consis-
tent from one location to the next was impossible. As a result,
distortion within recovered images was expected. By visual
inspection, it is easy to see that the centers of blocks 11 and
12 are the most heavily sampled—these locations are just above
and below the template center. Thus, the recovered images
beneath those regions are expected to be the most reliable.

Fig. 5 MIT image created on the basis of the 61 virtual measurements
—compared with original in Fig. 4. Contours are shown at intervals of
0.2 S∕m, with the contour at 0.4 given as reference.

Fig. 6 Impedance change in 5-loop coil (5 cm diameter) when posi-
tioned 1.0 mm above a 12-cm thick square slab of variable side
dimension. The results are compared with the infinite slab value com-
puted from an analytical formula. The finite element mesh used for
computing impedance change from Eq. (1) has resolution of about
0.5 cm for slabs up to 30 cm along a side, thereafter 1.0 cm.
Frequency is set at 12.5 MHz.

Fig. 7 102 × 122 mm2 template used for guiding placement of the
MIT single coil—the PCB supporting the coil has square dimensions
that allow it to just fit within any one of the squares.
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Spatial sampling frequency becomes less nearer the outer
boundaries of the template so that images are expected to be
less reliable there (also noted in virtual tests described in Sec. 6).

The mesh used to discretize the space beneath the template
(in the body) is shown in Fig. 8—note that it extends somewhat
beyond the sampling boundary of the template, given by the
middle solid border. The mesh of Fig. 8 was extruded into either
10 (mesh 1) or 9 (mesh 2) layers, with mesh 2 better resolving
the region nearer the template and mesh 1 emphasizing greater
depths in an effort to facilitate the resolution of the spinal canal.
The Z-locations of mesh horizons for the two mesh choices are
also shown in Fig. 8.

In order to retrieve the greatest amount of information avail-
able from the 132 coil loss values obtained from subjects, the
smoothing parameter α must be adjusted in a consistent and
meaningful way. The so-called L-curve method16 is one
approach for finding an optimal value for α, which involves find-
ing the knee in the log-log plot of residual norm versus gradient
norm. Here, a similar, but simpler approach involves plotting the
residual norm against the log of α. Starting from 0.01, α was
decreased until the root mean square error [left term of Eq. (13)]
showed little further decrease, i.e., where the knee is formed in
the proposed plot. For five of the subjects, the results of this
exercise are shown in Fig. 9, indicating that α ≈ 0.002 should
be the least value one could use and still represent an appropriate
tradeoff between smoothing and a small residual on mesh #1,
while 0.003 was judged best for mesh #2. For all images
shown here from mesh #2, 0.003 is used, while 0.002 is applied
for all images based upon mesh #1. Figure 10 shows results for
mesh #1, which are somewhat different than how α affects mesh
#2. In either case, the “knee” of the curve is viewed as the best
location for choosing α, as proposed in the L-curve approach.
Also, results appeared to be best with subject #2, so images are
shown for subject #2 only. Typically, inversion required about
1 h of processing on a Xeon processor and about 1.3 GB of
physical memory.

Inversion of data from any subject, on either mesh, shared the
common and very important feature that nearly all conductivity

values across FE mesh nodes fall within the range, from 0 to
2 S∕m. This result indicates successful inversion, at least in
an overall sense, since values outside this range would be unex-
pected. An exception occurs only along the bottom surface of
the rectangular mesh, at points having deepest locations within
the body, or most remote from the coil. This is most likely a
result of not extending the mesh over the entire tissue volume,
so that the collective effect of remote points on coil loss is to
cause some amount of overshoot there, essentially allowing
those points to “over contribute.” This is illustrated in Fig. 11,
which shows a sagittal slice located 2.5 cm offset from and par-
allel to the spinal column center line. To capture the distribution
of conductivity, 0 to 1 S∕m transitions are shown from black
to orange, 1 to 2 S∕m transitions from orange to yellow, 2 to
3 S∕m transitions from yellow to white, and finally, greater
than 3 S∕m is all white—to isolate regions of anomalously
high conductivity. First, we note that white only appears at

Fig. 8 Details of finite element meshes used for inversion of MIT clinical data—left hand graph shows
Z -elevations of layer horizons, with 0 cm at greatest body depth and 7 cm at lower boundary of template.

Fig. 9 Root mean square error [first term, Eq. (13)] as a function of
smoothing parameter α, indicating the best choice should be about
0.003; similar results were found for mesh #1.
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the deepest locations (Z ¼ 0), suggesting that there is indeed a
tendency for very remote points in the body to collectively con-
tribute excessively high values to the deepest mesh nodes.

Articulations with rib bones nominally begin about 1.75 cm
to either side of the spinal column center line (based upon a 3-D
model of the human skeleton). The sagittal slice of Fig. 11 is
2.5 cm right of the spine center, so that either transverse spinal
processes or ribs should be distinguishable, as indeed they are.
From the slice, transverse processes repeat about every 3.75 cm
which is the correct spacing as taken from anatomical models
using a caliper. Furthermore, transverse processes should lie at a
depth of about 4 cm beneath the template, which is the case from
the figure (Z ¼ 3 on axis). Another sagittal slice taken at the
same distance to the left of spinal column center is very similar
to that shown in Fig. 11. In order to facilitate comparison of
Fig. 11 structures to standard reference images, Fig. 12 shows
a similar parasagittal slice, offset by about 2.5 cm from the spine
center, taken from full body CT scans of a human male cadaver
(Visible Human, Research Systems, Inc., version 2.0) placed in
a supine position, though shown in the figure as standing.
The dimensions of the superimposed red box give a best esti-
mate of the region scanned and meshed during MIT imaging,
based upon scan dimensions given in the Visible Human

documentation (Table 5.3 of documentation). Note that the esti-
mated region includes four transverse processes or ribs joining
to a thoracic vertebral body.

If a sagittal slice is taken as close to the spinal column center-
line as possible, shown in Fig. 13, then the transverse processes
disappear as they should, and just a darkened, low conductivity
region is evident in the space of the spinal column. However, the
spinal canal is not visible with this mesh, which offers 1 cm
resolution, at best—note that the canal diameter is typically
1.5 cm and should start about 5 cm beneath the template (or Z ¼
2 on the axis). If the smoothing parameter is reduced to 0.002,
the canal is just barely visible, but not convincing. Thus, we
proceed to consider results from mesh #1, which uses 10 layers
of pentahedral elements and places more refinement at a greater
depth.

To improve prospects for resolving the spinal canal with
mesh #1, which is easily accomplished in MRI or CT scans,
the orange threshold was moved from 1 S∕m down to 0.5 S∕m.
Other thresholds were left the same as before—black at 0.0, yel-
low at 2.0, and white for all values above 3.0 S∕m, which are
considered anomalous as stated before. Figure 14 shows that the
canal is resolved in a transverse slice offset by about 2 cm from
the template center when using mesh #1. The image shows that
it is located at a depth of about 5.5 cm (Z ¼ 1.5) and has a diam-
eter of about 1.0 cm. Directly above the canal, there is the hint of
an outward spinal process on a vertebra. Also visible are the rib
articulations coming into the column at an angle of about
45 deg. The absence of any resolved structure above the spinal
column, closer to the skin surface is discussed in the next

Fig. 10 Root mean square error [first term, Eq. (13)] as a function of
smoothing parameter α, indicating the best choice should be about
0.002; similar results were found for mesh #2.

Fig. 11 Parasagittal slice (mesh #2) with subject in prone position,
parallel to spinal column, about 2.5 cm to the right of column center.
Z ¼ 0 is farthest from the coil and lies at the deepest point in the body
for either mesh.

Fig. 12 Parasagittal CT slice through the upper torso, offset from the
spinal axis by about 2.5 cm. The red box gives an estimate (see text)
of the region probed and meshed for the MIT scan.

Fig. 13 Sagittal slice (mesh #2) with subject in prone position, parallel
to and centered along the spinal column—canal not visible.
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section. Again, to facilitate comparison of the structure visible in
Fig. 14 with known standards, a transverse slice through a tho-
racic vertebral body is shown in Fig. 15, which is taken from full
body CT scans of a human male cadaver (Visible Human,
Research Systems, Inc., version 2.0) placed in a supine position,
though shown here as prone.

The final MIT image, shown in Fig. 16, is a sagittal slice
parallel to and centered on the spinal column as nearly as pos-
sible, with the intent of resolving the canal over the full length of
the space that was sampled. Clearly, in the regions beneath the
template that are most visited by the coil (just offset from the
template center), the canal is readily visible (Z ¼ 1.5), but is
not fully visible along its entire length. This is understandable
at the far right and left of the image where sampling frequency is
lowest in the template, but better canal resolution was expected
near the template center. Once improved methods are available
for accurately positioning the coil relative to target, resolving
structures in and around the spinal column should become
more feasible. Note that at both the lower right and lower
left of Fig. 16 the spinal column fades out, replaced by higher
conductivity material. This is clearly in error due to poor sam-
pling of these outlying regions.

8 Discussion of Imaging Results
Spinal column images were essentially the same across all sub-
jects. In all cases, ribs or transverse spinal processes were visu-
alized in parasagittal slices on either side of the spinal column
regardless of which mesh was used for inversion. Similarly, the

spinal canal could be readily seen for all subjects, but was only
seen clearly with mesh #1. Some variations across subjects were
found, in the form of distortion—presumably the result of our
inability to control and know coil rotation and position with suf-
ficient accuracy. As far as we know, these are the first in vivo
MIT images of electrical conductivity ever reported that visual-
ize the interior of any portion of the human body. Electrical
conductivity within the body (lungs) has been imaged using
electrical impedance tomography, but resolution is limited to
about 12% of the thoracic diameter,19 or about 40 mm. There
are published results ofMIT-imaged phantoms, composed of con-
tainers filled with various concentrations of saline. However, the
body is much more challenging due to its greater spatial extent
compared with the rather small phantoms commonly used.

A puzzling result associated with our set of spinal images is
that while there is an ability to resolve objects at a significant
depth beneath the template and skin, resolvable structures nearer
the skin where the coil was actually placed seem absent. A part
of the reason may be less conductivity contrast in the soft tissues
around the spinal column than surmised, although it would seem
that fat and muscle tissue should be distinguishable—fat con-
ductivity is less than about 0.1 S∕m while muscle conductivity
is nearly 1 S∕m.1 Given that virtual data were imaged success-
fully when conductivity varied by a factor of nearly 2 (Sec. 6),
then surely fat and muscle tissues create sufficient contrast to
permit their resolution. However, since all subjects had BMI
<25, fat content between scapulae may be far too low, leaving
essentially only muscle and bone. Given our crude scanning
technique, it is also likely that structural resolution is deficient
just beneath the skin since position error is much more likely to
impact these locations. Revisiting Fig. 3 should make plain that
a position error will be much more consequential at coil posi-
tions located just a few millimeters above the skin than when
distances are around 15 mm. Observing the nurse while relocat-
ing the sensor indicated that precise positioning could never be
assured with our scanning method since, among other reasons,
the amount of pressure applied to place the device could not be
kept the same, and even if possible, variations in upper back
curvature would prevent knowing coil location and orientation
with accuracy. This interpretation is consistent with the results
of Figs. 9 and 10 which show that we actually achieved a more
satisfactory optimal RMS fit error (lower) when most mesh
nodes are farther from the coil locations—as with mesh #1.

In view of the impact of mesh design here, in particular mesh
spatial refinement at greater depth, it would seem important to

Fig. 14 Transverse slice (mesh #1) with subject in prone position,
about 2 cm below template center—spinal canal is visible at a
depth of about 5.5 cm (1.5 cm on Z -axis), and centered horizontally.

Fig. 15 Prone-oriented transverse CT slice through a human male
thoracic vertebral body; the red box is drawn to approximate the
region that was scanned and meshed by the single-coil MIT method.
Rib articulations with transverse processes are clearly visible here.

Fig. 16 Sagittal slice (mesh #1) with subject in prone position, parallel
to and centered along the spinal column; canal is visible along a por-
tion of the spinal column along the line Z ¼ 1.5 cm—in particular,
beneath those regions of the template that are better sampled.
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further investigate the value of spatially variant regularization,20,21

which was shown effective for a related inverse problem solved in
diffuse optical tomography (DOT). Permitting the reguarlization
parameter to vary with increased distance between mesh nodes
and sensor could be useful for penalizing solutions at nodes that
are expected to contribute little to the loss signal measured at the
coil. But it may be wiser to penalize solutions at nodes nearer the
surface, where relative position of coil and surface is harder to
establish at present (again, note position sensitivity as revealed
in Fig. 3). At this point, whether to assign the regularization
parameter to a higher value for nodes nearer or farther from
the single sensor is not clear, but some experimentation with the
approach is entirely appropriate. A difference between DOT and
single coil MIT is that here we have but one sensor, while DOT
uses at least two. Thus, spatially variant regularization may be
simpler to implement and have greater effect for single coil MIT.

Clearly, sampling is vital to improving our prospects for sin-
gle-coil MIT imaging. Ideally, additional internal (or external)
instrumentation needs to capture pitch and roll rotations together
with coil position, all while the instrument is moved within the
space near the target. We envision that during collection of coil
loss data, coil position and orientation are automatically col-
lected and logged. A further benefit of position and orientation
logging is the automatic determination of locations in space that
are strictly outside of the body being scanned. Then, coil posi-
tion and orientation data not only permit us to know where the
coil is when coil loss is measured, such data also establish the
boundary surface of the scanned object—since the coil only
closely approaches the surface of the object, never pushing
into it. Tracking coil position and orientation during a physical
scan provides a powerful benefit to the inversion step—only the
region of space not visited by the coil would ever need to be
meshed, or discretized by grid construction. In addition to mak-
ing more measurements, independent measurement sets could
be created from sensors having different coil diameters. There
is nothing to stop us from combining contributions from coils of
different diameters in Eq. (8). This would certainly be helpful
when there is a desire to probe structures at greater depth.

Appendix A: Sensor Mounting and Equivalent
Circuit
All electronics was supported on a single board, as shown in
Fig. (17), sufficiently small to allow battery-powered, hand-held

operation and communication of data to a nearby laptop via
Bluetooth. The equivalent circuit shown here is very common
in circuit modeling [see Texas Instruments, “Understanding
Basic Analog—Passive Devices,” sloa027 (1999), Fig. 4, page 6
(available online)].

Appendix B: Fourier Transform of Free Space
Green Function
Equation (3.164) of Jackson22 (third edition) gives the three-
dimensional Fourier representation of the infinite space Green
function as

1

j~r − ~r 0j ¼
1

2π2

Z
d3k

ei~k·ð~r−~r 0Þ

k2
: (16)

This result was used in Eqs. (36) and (37) of Appendix E.

Appendix C: Ring (Toroid) Function
Calculations
A suitable definition for the ring function, in integral form, is
found in Gradshteyn and Ryzhik23 on page 1001, formula
8.713-1, specialized to order zero and degree 1∕2:

Q1∕2ðηÞ ¼
1ffiffiffi
2

p
Z

π

0

cosðtÞdtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η − cosðtÞp : (17)

Rather than work from Eq. (17), a particular hypergeometric
form was used for computation of the ring function and is found
on page 1022 of Gradshteyn and Ryzhik23 as
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(18)

A recursion formula from Gradshteyn and Ryzhik23 (page
1006) relates Q−3∕2ðηÞ to Q1∕2ðηÞ:

Qμ
−ν−1 ¼

sin½ðνþ μÞπ�
sin½ðν − μÞπ� Qμ

ν −
π cos νπ cos μπ

sin½ðν − μÞπ� Pμ
ν . (19)

Of course, now we specialize to μ ¼ 0 and ν ¼ 1∕2 to get the
desired result.

Appendix D: Notes on Supporting Electronics
Only a small but important portion of the analog circuitry asso-
ciated with the sensor is given here in Fig. 18. Many variants of
the circuit shown were tested in MultiSim (National
Instruments), so that the component values indicated are not
necessarily those used in the final hardware. Critical compo-
nents are decoupling resistors R13, R20, and R21. These,
together with battery operation and proper coil connection to
excitation (see Sec. 3), provide superb coil isolation from elec-
tronics, essential to the elimination of RF ground loop and

Fig. 17 (a) Electronics, (b) coil, and (c) enclosure for the single-coil
MIT imaging “scanner”; also, an equivalent circuit (b) representation
for the coil sensor is shown.

Journal of Medical Imaging 013502-11 Jan–Mar 2015 • Vol. 2(1)

Feldkamp: Single-coil magnetic induction tomographic three-dimensional imaging



capacitive coupling effects. Considerable additional electronics
(digital) was needed but is not shown for the sake of simplicity.
AD8302 operation could be supported through development
boards available from the vendor but are not used here due
to the need for portability and hand-held use. Data are streamed
to a nearby laptop via Bluetooth circuitry not shown here.

Appendix E: Derivation of Analytical Coil-Loss
Equation
Under the restrictions that all electrical properties are time-in-
dependent, that permittivity ε and permeability μ are uniform
in space, the governing PDE for the electric field ~E 0 with exter-
nal source current ~j 0 is

∇2 ~E 0 − εμ
∂2 ~E 0

∂t2
− μσ̆

∂~E 0

∂t
¼ μ

∂~j 0

∂t
þ 1

ε
∇ρ 0: (20)

Ohm’s law has been introduced with an isotropic electrical
conductivity, σ̆ ¼ σ̆ð~rÞ, variable along all three orthogonal space
directions, and ρ 0 is the electrical space charge density. A further
approximation is now made that considers spatial variation in
charge density as negligible, so the far right term is dropped.
As a consequence, solutions to Eq. (20) will not predict the cor-
rect charge density in a medium responding to the external
source current. Regardless of the true charge distribution, if
quasi-static conditions prevail, the contribution to the electric
field arising from the corresponding instantaneous Coulomb
potential will have zero curl and will not contribute to the

EMF developed in a circular loop coil. Thus, the error in
Eq. (20) solutions due to assuming uniformly distributed elec-
trical charge is expected to be inconsequential.

An externally driven electrical current is prescribed through
~j 0 and is confined to a single loop of radius ρ0 lying in the XY
plane and centered at the origin. Additional concentric loops, all
in the same plane, will be added later. Though the conductive
region is considered arbitrary and filling all space, the actual
conductive material encountered in practice will be limited in
spatial extent and will not have contact with the source.
Nevertheless, boundaries are permitted to extend out to infinity
where the electric field and its first order spatial derivatives are
required to vanish. The third term on the left arises due to eddy
currents created in response to the external current loop.

Electric field, ~E 0, and the external source current are treated
as varying harmonically in time at the applied excitation fre-
quency ω, so that

~E 0 ¼ ~Eð~rÞe−iωt; ~j 0 ¼ ~jð~rÞe−iωt: (21)

Electric field and current need not be in phase, inasmuch as
both ~Eð~rÞ and ~jð~rÞ are, in general, complex with different phase
factors. Using Eq. (21) and dropping the charge density gradient
term of Eq. (20), our governing PDE becomes

∇2 ~Eþ iωμσ ~E ¼ −iωμ~j; σ ¼ σ̆ − iεω: (22)

Here, σ is the complex conductivity, with the real part
responsible for inductive loss and the imaginary part responsible
for coil detuning. At 12.5 MHz, the imaginary part of the

Fig. 18 Analog portion of circuit associated with coil (L1 in schematic); C1 is a tunable varactor, while
R2 is the loss in L1—the quantity to be measured; outputs from R15 to R16 are used to drive the
Analog Devices AD8302 phase-gain detector. Lower voltage OP amps were used in the actual
instrument.
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conductivity is about 0.07 S∕m if the dielectric constant is 100,
which is typical for muscle tissues at this frequency, while 55 is
typical for bone and 35 for fat.1 More often, Eq. (22) is written in
terms of a complex permittivity [see Ref. 24, Eq. (2.32)] rather
than conductivity when the latter is very small. With the Z-axis
normal to the plane of the coil, only the X and Y components of
the electric field are needed to compute impedance changes for
the current loop, so it is convenient now to write out the indi-
vidual components:

∇2Ex þ iωμσEx ¼ −iωμjx;

∇2Ey þ iωμσEy ¼ −iωμjy.
(23)

Using cylindrical coordinates, ρ, ϕ, z, loop current density
has a contribution only in the angular direction ϕ, equal to
Jϕ. Thus, the X and Y components of current density can be
written in terms of cylindrical coordinates as

~j ¼ −Jϕ sin ϕ x̂þ Jϕ cos ϕ ŷ. (24)

Unit vectors along the X and Y axes are given by x̂ and ŷ.
Current density is confined to a loop of wire having an infini-
tesimal thickness. Hence, current density Jϕ can be represented
in terms of Dirac delta functions:

Jϕ ¼ I0δðzÞδðρ − ρ0Þ. (25)

Using Eqs. (24) and (25), the individual current density com-
ponents can be written and then introduced into Eq. (23) to give

∇2Ex þ iωμσEx ¼ iωμI0 sin ϕδðzÞδðρ − ρ0Þ;
∇2Ey þ iωμσEy ¼ −iωμI0 cos ϕδðzÞδðρ − ρ0Þ. (26)

A solution is sought after first performing a Fourier transfor-
mation of each equation in Eq. (26). For example, the spatial
Fourier transformation of Exðx; y; zÞ is written as

Ẽxð~kÞ ¼
1

ð ffiffiffiffiffi
2π

p Þ3
Z Z Z

d~rei~k·~rExð~rÞ. (27)

Fourier coordinates are ~k ¼ ðkx; ky; kzÞ and integration is
over all Cartesian space. Note there is some flexibility about
how the Fourier integrals are defined—both regarding the fac-
tors of

ffiffiffiffiffi
2π

p
and the sign of the exponent inside the integrand

(+ or −).25 The Fourier inversion integral is

Exð~rÞ ¼
1

ð ffiffiffiffiffi
2π

p Þ3
Z Z Z

d~ke−i~k·~rẼxð~kÞ. (28)

Similar expressions can be written for the Y-component of
the electric field.

Fourier transformation is now applied to each of the equa-
tions in Eq. (26), leading to

−ðκ2 þ k2zÞẼx þ
iμω

ð ffiffiffiffiffi
2π

p Þ3
Z Z Z

σExei
~k·~rd~r

¼ −2π
ωμI0ρ0
ð ffiffiffiffiffi

2π
p Þ3

ky
κ
J1ðκρ0Þ;

−ðκ2 þ k2zÞẼy þ
iμω

ð ffiffiffiffiffi
2π

p Þ3
Z Z Z

σEyei
~k·~rd~r

¼ 2π
ωμI0ρ0
ð ffiffiffiffiffi

2π
p Þ3

kx
κ
J1ðκρ0Þ. (29)

As an aid to eventual integration, a cylindrical polar Fourier
coordinate has been defined as κ2 ¼ k2x þ k2y. Far-field boundary
conditions were invoked leading up to Eq. (29), namely that
both the electric field and its component spatial gradients vanish
infinitely far from the source. Note that there is no near boun-
dary or sharp interface between regions, since conductivity is
taken as varying continuously throughout all space. Thus,
there is no need to invoke the usual boundary conditions on tan-
gential and normal fields.

Defining a dimensionless conductivity as Σ ¼ σ∕σ0, with σ0
taken as real and nominally 1 S∕m, multiplying Eqs. (29)
by ρ20, and defining a dimensionless parameter ξ ¼ μωσ0ρ

2
0∕

ð ffiffiffiffiffi
2π

p Þ3, Eqs. (29) can be written as

−ρ20ðκ2 þ k2zÞẼx þ iξ
Z Z Z

ΣExei
~k·~rd~r

¼ −2π
ωμI0ρ30
ð ffiffiffiffiffi

2π
p Þ3

ky
κ
J1ðκρ0Þ;

−ρ20ðκ2 þ k2zÞẼy þ iξ
Z Z Z

ΣEyei
~k·~rd~r

¼ 2π
ωμI0ρ30
ð ffiffiffiffiffi

2π
p Þ3

kx
κ
J1ðκρ0Þ. (30)

At this point, the three-dimensional Fourier convolution
theorem is needed to cast the remaining integrals solely in
terms of the Fourier transformed electric field and non-dimen-
sional conductivity:
Z Z Z

ΣExei
~k·~rd~r ¼

Z Z Z
Σ̃ð~k − ~qÞẼxð~qÞd~q. (31)

A similar expression can be written for the Y-component of
the Fourier transformed electric field. Thus, Eq. (30) can be
written entirely in terms of Fourier transformed field and
conductivity:

−ρ20ðκ2 þ k2zÞẼx þ iξ
Z Z Z

Σ̃ð~k − ~qÞẼxð~qÞd~q

¼ −2π
ωμI0ρ30
ð ffiffiffiffiffi

2π
p Þ3

ky
κ
J1ðκρ0Þ;

−ρ20ðκ2 þ k2zÞẼy þ iξ
Z Z Z

Σ̃ð~k − ~qÞẼyð~qÞd~q

¼ 2π
ωμI0ρ30
ð ffiffiffiffiffi

2π
p Þ3

kx
κ
J1ðκρ0Þ. (32)

Because the non-dimensional real parameter ξ is very small
(≪1), a regular perturbation solution approach is useful. Thus,
expansions in ξ are prepared in the form:
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Ẽx ¼
X∞
n¼0

Ẽxnξ
n; Ẽy ¼

X∞
n¼0

Ẽynξ
n. (33)

If these expansions are inserted into Eq. (32), with terms hav-
ing like powers of ξ gathered together, a sequence of solutions is
recovered. The zero-order solutions are

Ẽx0 ¼ 2π
ωμI0ρ0
ð ffiffiffiffiffi

2π
p Þ3

ky
κðκ2 þ k2zÞ

J1ðκρ0Þ;

Ẽy0 ¼ −2π
ωμI0ρ0
ð ffiffiffiffiffi

2π
p Þ3

kx
κðκ2 þ k2zÞ

J1ðκρ0Þ. (34)

These may be inverted and further developed to yield the
well-known solution for the magnetic vector potential for a cir-
cular current loop in free space in the quasi-static limit (Panofsky
and Phillips,26 second edition, page 156, obtained using a sepa-
ration of variables approach). We proceed to get first order sol-
utions from the zero-order solutions:

Ẽx1 ¼
i
R R R

Σ̃ð~k − ~qÞẼxoð~qÞd~q
ρ20ðκ2 þ k2zÞ

;

Ẽy1 ¼
i
R R R

Σ̃ð~k − ~qÞẼyoð~qÞd~q
ρ20ðκ2 þ k2zÞ

. (35)

After first substituting the Fourier transformed electrical con-
ductivity, Σ̃, followed by introduction of zero-order solutions, all
Fourier integrations involving ~qmay be completed. This leads to
X and Y components for the first order solutions to the electric
field in Fourier space:

Ẽx1ð~kÞ ¼
ωμI0
2πρ0

Z Z Z
d~rΣð~rÞ sin ϕffiffiffiffiffiffiffi

ρρ0
p Q1∕2ðηÞ

ei~k·~r

k2
;

η ¼ ρ2 þ ρ20 þ z2

2ρρ0
(36)

and

Ẽy1ð~kÞ ¼ −
ωμI0
2πρ0

Z Z Z
d~rΣð~rÞ cos ϕffiffiffiffiffiffiffi

ρρ0
p Q1∕2ðηÞ

ei~k·~r

k2
.

(37)

Note that the argument of the toroid (or ring) function
Q1∕2ðηÞ lies in the interval 1 < η < ∞, and is readily evaluated
using the hypergeometric series form (Appendix C). Equa-
tions (36) and (37) are straightforward to invert, giving first
order components of the electric field in Cartesian space. Using
Eq. (3.164) of Jackson22 (third edition—see Appendix B) and
returning to dimensioned electrical conductivity:

Ex1ð~rÞ ¼
ωμI0

σ0ρ0
ffiffiffiffiffi
8π

p
Z Z Z

d~r 0σð~r 0Þ sin ϕ 0ffiffiffiffiffiffiffiffiffi
ρ 0ρ0

p Q1∕2ðη 0Þ
j~r − ~r 0j

(38)

and

Ey1ð~rÞ ¼ −
ωμI0

σ0ρ0
ffiffiffiffiffi
8π

p
Z Z Z

d~r 0σð~r 0Þ cos ϕ
0ffiffiffiffiffiffiffiffiffi

ρ 0ρ0
p Q1∕2ðη 0Þ

j~r − ~r 0j .

(39)

Equations (38) and (39) lead to corrections for the electric
field after multiplying by ξ:

δExð~rÞ ¼
μ2ω2ρ0I0

8π2

Z Z Z
d~r 0σð~r 0Þ sin ϕ 0ffiffiffiffiffiffiffiffiffi

ρ 0ρ0
p Q1∕2ðη 0Þ

j~r − ~r 0j ;

(40)

and for the Y-component,

δEyð~rÞ ¼ −
μ2ω2ρ0I0

8π2

Z Z Z
d~r 0σð~r 0Þ cos ϕ

0ffiffiffiffiffiffiffiffiffi
ρ 0ρ0

p Q1∕2ðη 0Þ
j~r − ~r 0j .

(41)

The impedance change for a single loop, in response to coil-
target interaction, is given by integration of the electric field
along the circular loop:

δZ ¼ 1

I0

I
δ~E · d~r

¼ 1

I0

Z
2π

0

ð−δEx sin ϕþ δEy cos ϕÞρ0dϕ. (42)

An expansion for the free space Green function in Eqs. (40)
or (41), in cylindrical coordinates, greatly facilitates completing
the integrals in Eq. (42) and is found in Cohl et al.27

1

j~r − ~r 0j ¼
1

π
ffiffiffiffiffiffiffi
ρρ 0p X∞

m¼−∞
Qm−1∕2ðηÞeimðϕ−ϕ 0Þ;

η ≡
ρ2 þ ρ 02 þ ðz − z 0Þ2

2ρρ 0 . (43)

Substitution of Eq. (43) into Eqs. (40) and (41) and then plac-
ing the results into Eq. (42) leads to the desired impedance
change for a coil fashioned from a single loop:

δZ ¼ −
μ2ω2ρ0
4π2

Z
d3x

σð~rÞ
ρ

½Q1∕2ðηÞ�2;

η ≡
ρ20 þ ρ2 þ z2

2ρρ0
. (44)

Equation (44) is obtained by noting that contributions from
the sum in Eq. (43) come only from m ¼ �1; and making use
of a recursion formula given in Gradshteyn and Ryzhik,23 page
1006, Appendix C shows that Q−3∕2ðηÞ ¼ Q1∕2ðηÞ. Inasmuch
as electrical conductivity is complex valued, we have both real
and imaginary components for impedance change in the loop:

δZre ¼ −
μ2ω2ρ0
4π2

Z
d3x

σ̆ð~rÞ
ρ

½Q1∕2ðηÞ�2;

δZim ¼ εμ2ω3ρ0
4π2

Z
d3x

½Q1∕2ðηÞ�2
ρ

.

(45)

Though electrical conductivity does not appear in the imagi-
nary component of impedance change, there is nonetheless an
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impedance change, but it is not really caused by the conductive
target. Rather, the imaginary component arises as a correction
due to the finite speed of light, coming from the first order per-
turbation correction. In fact, had the middle term on the left hand
side of Eq. (20) been dropped at the outset, as is usually done to
approximate light travel as instantaneous, then the imaginary
component would be absent here. Indeed, as is shown by
Harpen11 for the simpler case of a conductive sphere in a spa-
tially uniform RF field, the real part of impedance change varies
as the square of frequency while the imaginary part varies as the
cube of frequency [see Eqs. (21) and (22)]. Furthermore, his
result shows a first order correction to the real component of
impedance varying linearly with conductivity, and the first
order correction to the imaginary component as independent
of conductivity. All terms appearing in his expansion of the
real component of impedance change are independent of permit-
tivity. Harpen’s paper also gives important experimental results
for conductive spheres (radius ¼ 4.5 cm) showing that the real
part of impedance varies linearly with conductivity up to
2.0 S∕m at a frequency of 63 MHz and then begins to tail
off due to skin depth effects. He also showed third power
dependence on frequency for the imaginary impedance compo-
nent up to 90 MHz for low conductivity media. Thus, to avoid
skin depth effects, experimental work is conducted here at
12.5 MHz, well below the 63 MHz threshold given by Harpen.

Results thus far pertain to the case of a single circular loop
centered at the origin and lying in the XY-plane. This can be
extended to treat the case of any number of circular concentric
loops all centered at the origin and lying within the XY-plane—
the loops are presumed wired in series and carrying the same
current, I0. For a specific loop of radius ρj, Eqs. (40) and
(41) are rewritten:

δExð~rÞ ¼
μ2ω2ρjI0

8π2

Z Z Z
d~r 0σð~r 0Þ sin ϕ 0ffiffiffiffiffiffiffiffiffi

ρ 0ρj
p Q1∕2ðη 0

jÞ
j~r − ~r 0j ;

(46)

δEyð~rÞ ¼ −
μ2ω2ρjI0

8π2

Z Z Z
d~r 0σð~r 0Þ cos ϕ

0ffiffiffiffiffiffiffiffiffi
ρ 0ρj

p Q1∕2ðη 0
jÞ

j~r − ~r 0j .

(47)

The magnetic flux from loop j links every other loop, includ-
ing itself. Specifically, flux from loop j linking loop k produces
a contribution to impedance change for the collection of loops in
series:

δZk ¼
1

I0

I
δ~E · d~r

¼ ρk
I0

Z
2π

0

ð−δEx sin ϕþ δEy cos ϕÞdϕ. (48)

Introducing the changes in the electric field into Eq. (48) lead
to the real component of impedance change:

δZreðjkÞ ¼ −
μ2ω2 ffiffiffiffiffiffiffiffiffi

ρjρk
p
4π2

Z
d3x

σ̆ð~rÞ
ρ

Q1∕2ðηjÞQ1∕2ðηkÞ;
(49)

where

ηj ¼
ρ2 þ ρ2j þ z2

2ρρj
; ηk ¼

ρ2 þ ρ2k þ z2

2ρρk
. (50)

Total impedance change is then given by a double summa-
tion, allowing for contributions due to any loop interacting with
any other loop as well as itself:

δZre ¼ −
μ2ω2

4π2
X
j;k

ffiffiffiffiffiffiffiffiffi
ρjρk

p Z
d3x

σ̆ð~rÞ
ρ

Q1∕2ðηjÞQ1∕2ðηkÞ.

(51)

In the experimental sections, we compare this multiloop
theoretical result with experimental coil measurements over
an aqueous potassium chloride solution and then go on to exper-
imentally demonstrate its great utility for single coil MIT imag-
ing of the upper thoracic spine where natural conductivity
contrasts are expected due to bone and muscle tissues.

Acknowledgments
Construction of electronics and enclosure for MIT measure-
ments by Plexus Services Corporation in Neenah, Wisconsin,
is gratefully acknowledged. Also, we wish to thank the Clinical
Research Services team at Kimberly-Clark Corporation for as-
sistance with the clinical study.

References
1. C. Gabriel, S. Gabriel, and E. Courthout, “The dielectric properties of

biological tissues: I. Literature survey,” Phys. Med. Biol. 41, 2231–2249
(1996).

2. D. Haemmerich et al., “In vivo electrical conductivity of hepatic
tumors,” Physiol. Meas. 24, 251–260 (2003).

3. J. Songer, “Tissue ischemia monitoring using impedance spectroscopy:
clinical evaluation,” M.S. Thesis, Worcester Polytechnic Institute
(2001).

4. H. Y. Wei and M. Soleimani, “Electromagnetic tomography for medical
and industrial applications: challenges and opportunities,” Proc. IEEE
101, 559–564 (2013).

5. T. M. Taves and S. B. King, “In vivo conductivity measurement using
MRI based noise tomography at 3T,” in Proc. Joint Annual Meeting of
ISMRM-ESMRMB, p. 331, Berlin, Germany (2007).

6. E. C. Herrman et al., “Skin perfusion responses to surface pressure-
induced ischemia: implication for the developing pressure ulcer,” J.
Rehabil. Res. Dev. 36(2), 109–120 (1999).

7. J. R. Feldkamp and J. Heller, “Effects of extremity elevation and health
factors on soft tissue electrical conductivity,”Meas. Sci. Rev. 9(6), 169–
178 (2009).

8. H. Y. Wei and M. Soleimani, “Three dimensional magnetic induction
tomography imaging using a matrix free Krylov subspace inversion
algorithm,” Prog. Electromagn. Res. 122, 29–45 (2012).

9. H. Scharfetter et al., “Single-step 3D image reconstruction in magnetic
induction tomography: theoretical limits of spatial resolution and con-
trast to noise ratio,” Ann. Biomed. Eng. 34, 1786–1798 (2006).

10. C. H. Igney, R. Pinter, and O. Such, “Magnetic induction tomography
system and method,” U.S. Patent No. 8,125,220 B2 (2012).

11. M. D. Harpen, “Influence of skin depth on NMR coil impedance: Part
II,” Phys. Med. Biol. 33, 597–605 (1988).

12. M. D. Harpen, “Distributed self-capacitance of magnetic resonance sur-
face coils,” Phys. Med. Biol. 33, 1007–1016 (1988).

13. A. J. M. Zaman, S. A. Long, and C. G. Gardner, “The impedance of a
single-turn coil near a conducting half space,” J. Nondestructive Eval.
1(3), 183–189 (1980).

14. J. T. Conway, “Inductance calculations for non-coaxial coils using
Bessel functions,” IEEE Trans. Magn. 43, 1023–1034 (2007).

15. F. E. Terman, Radio Engineer’s Handbook, 1st ed., McGraw-Hill,
London (1950).

Journal of Medical Imaging 013502-15 Jan–Mar 2015 • Vol. 2(1)

Feldkamp: Single-coil magnetic induction tomographic three-dimensional imaging

http://dx.doi.org/10.1088/0031-9155/41/11/001
http://dx.doi.org/10.1088/0967-3334/24/2/302
http://dx.doi.org/10.1109/JPROC.2012.2237072
http://dx.doi.org/10.2478/v10048-009-0028-0
http://dx.doi.org/10.2528/PIER11091513
http://dx.doi.org/10.1007/s10439-006-9177-6
http://dx.doi.org/10.1088/0031-9155/33/5/007
http://dx.doi.org/10.1088/0031-9155/33/9/001
http://dx.doi.org/10.1007/BF00567090
http://dx.doi.org/10.1109/TMAG.2006.888565


16. Å. Björck, Numerical Methods for Least Squares Problems, Vol. 204,
p. 204, Society for Industrial and Applied Mathematics, Philadelphia
(1996).

17. M. Rudnicki and D. Krawczyk-Stańdo, “Modern regularization tech-
niques for inverse modelling: a comparative study,” in X-th
International Workshop on Optimization and Inverse Problems in
Electromagnetism, Sept. 14-17, pp. 56–59, Ilmenau, Germany (2008).

18. K. H. Haskell and R. J. Hanson, “An algorithm for linear least squares
problems with equality and nonnegativity constraints,”Math. Program.
21, 98–118 (1981).

19. E. L. V. Costa, R. G. Lima, and M. B. P. Amato, “Electrical impedance
tomography,” Curr. Opin. Crit. Care 15, 18–24 (2009).

20. H. Dehghani et al., “Depth sensitivity and image reconstruction analysis
of dense imaging arrays for mapping brain function with diffuse optical
tomography,” Appl. Opt. 48(10), D137–D143 (2009).

21. S. H. Katamreddy and P. K. Yalavarthy, “Model-resolution based regu-
larization improves near infrared diffuse optical tomography,” J. Opt.
Soc. Am. 29(5), 649–656 (2012).

22. J. D. Jackson, Classical Electrodynamics, 3rd ed., JohnWiley and Sons,
New York, NY (1999).

23. I. S. Gradshteyn and Ryzhik, “Table of integrals, series and products,”
Corrected and Enlarged Edition, A. Jeffrey, Academic Press, New
York, NY (1980).

24. L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed.,
Cambridge University Press, Cambridge, UK (2012).

25. E. Zauderer, Partial Differential Equations of Applied Mathematics,
John Wiley & Sons, Inc., New York, NY (1983).

26. W. K. H. Panofsky and M. Phillips, Classical Electricity and
Magnetism, 2nd ed., Addison-Wesley Publ. Co., Reading,Massachusetts
(1962).

27. H. S. Cohl et al., “Developments in determining the gravitational poten-
tial using toroidal functions,” Astron. Nachr. 321, 363–372 (2000).

Joseph R. Feldkamp is a physical scientist, with MS and PhD
degrees from Purdue University. He has been a research technical
leader at Kimberly-Clark for nearly 15 years. Previous positions
were held at Diconix, Monsanto, Northwestern University and
Applied Research Associates. His current research interests include
applications of electrodynamics to the development of biological
sensors.

Journal of Medical Imaging 013502-16 Jan–Mar 2015 • Vol. 2(1)

Feldkamp: Single-coil magnetic induction tomographic three-dimensional imaging

http://dx.doi.org/10.1007/BF01584232
http://dx.doi.org/10.1097/MCC.0b013e3283220e8c
http://dx.doi.org/10.1364/AO.48.00D137
http://dx.doi.org/10.1364/JOSAA.29.000649
http://dx.doi.org/10.1364/JOSAA.29.000649
http://dx.doi.org/10.1002/(ISSN)1521-3994

