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Abstract. We present a discrete compactness (DC) index, together with a classification scheme, based both on
the size and shape features extracted from brain volumes, to determine different aging stages: healthy controls
(HC), mild cognitive impairment (MCI), and Alzheimer’s disease (AD). A set of 30 brain magnetic resonance
imaging (MRI) volumes for each group was segmented and two indices were measured for several structures:
three-dimensional DC and normalized volumes (NVs). The discrimination power of these indices was deter-
mined by means of the area under the curve (AUC) of the receiver operating characteristic, where the proposed
compactness index showed an average AUC of 0.7 for HC versus MCI comparison, 0.9 for HC versus AD sep-
aration, and 0.75 for MCI versus AD groups. In all cases, this index outperformed the discrimination capability of
the NV. Using selected features from the set of DC and NV measures, three support vector machines were
optimized and validated for the pairwise separation of the three classes. Our analysis shows classification
rates of up to 98.3% between HC and AD, 85% between HC and MCI, and 93.3% for MCI and AD separation.
These results outperform those reported in the literature and demonstrate the viability of the proposed morpho-
logical indices to classify different aging stages. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
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1 Introduction
Morphometric measures of brain structures can be useful in deter-
mining changes related to diverse pathologies. Attempts have
been made to characterize brain shape using different metrics,
but this continues to be an open challenge. A great variety of dis-
eases can affect brain morphology either globally or in some spe-
cific regions. Such is the case of Alzheimer’s disease (AD) which
is a neurodegenerative condition characterized by progressive
cognitive deterioration that limits the performance of daily activ-
ities. Its diagnosis is based on the information provided by a care-
ful clinical examination, a thorough interview of the patient and
relatives, imaging, and a neuropsychological assessment.1

A transitional stage prior to AD is known as the mild cog-
nitive impairment (MCI) stage,2 which is characterized by
memory loss with cognitive disorder. Studies have reported that
between 10% and 64% of subjects with MCI are at risk of devel-
oping AD. This latter pathology develops primarily in subjects
aged 65 and older and affects approximately 25 million people
worldwide.1 The timely detection of changes in brain tissue
caused by MCI could prompt actions aimed at preventing or
delaying the progression of the disease, either from normal
subjects to MCI or from MCI to AD. A decline in memory,
loss of attention, and lack of ability to perform daily activities
indicate a high probability of having dementia; subjects with

these symptoms are usually evaluated with neuropsychological
standardized tests.3,4 Currently, an expert diagnosis is based on
the use of brain magnetic resonance imaging (MRI), which is
a noninvasive technique that allows the observation of the
morphometric changes caused by AD; these studies evidence
a loss of volume in the cerebral cortex, a ventricular dilation,
and a cerebral deformation, mainly affecting the temporal and
parietal lobes.5,6 At substructure level, researchers report4,7,8 that
AD has a prevalence in fronto-temporal degeneration, atrophy-
ing hippocampus, and amygdala tissue.

With early detection of these pathologies, action can be taken
in order to delay the neurodegenerative process; therefore, it is
important to have indices that help to describe and characterize
these pathologies, in addition to automated methods that support
their diagnosis. Several studies report the use of volume mea-
surements to describe the changes related to AD,4,8–12 finding
significant differences in gray matter (GM) volume between
healthy controls (HC) and MCI compared with AD. Normalized
volumes (NVs) of GM have been reported in Ref. 11: 0.36 for
HC, 0.345 to 0.355 for MCI, and 0.34 for AD subjects. Other
authors13 have found a loss of GM tissue in the temporal lobe of
about 12% between HC and AD and 8% between MCI and
AD. Other researchers have found that this neurodegenerative
process causes an asymmetry in the cerebral hemispheres,11

which increases as AD progresses.
Most of the studies rely on volume indices to quantify brain

changes during aging. A preliminary study carried out by our
research group proposed the discrete compactness (DC) to
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measure brain shapes in normal synthetic MR structures; we
obtained a mean absolute volume of 826.7 cm3 and mean
compactness of 0.876 for GM and a 714.5 cm3 mean absolute
volume and 0.917 mean compactness for white matter (WM);
this research aimed to explore the compactness as a shape index
to describe brain structures.14

The use of image processing techniques and biomarkers that
describe the morphology and geometry of normal and patho-
logical brain structures is useful to automate the diagnosis.
Some researchers15 have used brain MRI studies to obtain geo-
metric biomarkers, such as gray and WM volumes, enclosing
surface area, circularity, elongation, and rectangularity of differ-
ent structures. These features together with a principal compo-
nent analysis and a combination of support vector machine
(SVM) and self-organizing maps are used to classify normal and
demential subjects, obtaining a classification rate of 94.12%
between HC and AD and 88.89% between HC and MCI.
Chincarini et al.16 used an automatic selection of features
obtained from substructures, such as the hippocampus, amyg-
dala, insula, and middle and inferior temporal gyri, together
with a classification scheme based on SVM, obtaining an area
under the curve (AUC) of 0.97 between HC and AD.

In the present study, we propose the use of an optimized DC
measure and the NV to describe, characterize, and differentiate
the morphology of brain structures in three populations: HC,
MCI, and AD, matched by age in a 68 to 85 years rank. The
purpose was to explore and compare the capability of these two
parameters to differentiate brain structures that are affected by
the pathological processes of aging and to determine the com-
pactness sensitivity to morphological changes. Additionally,
the convenience of incorporating a shape measure based on the
three-dimensional (3-D) DC is demonstrated; these parameters,
when used within an optimized classification model, together
with properly selected features, provide an adequate means of
determining different stages of normal and abnormal aging.

2 Methodology

2.1 Studied Populations

Three groups were analyzed: normal HC, subjects presenting
MCI, and patients with AD. Thirty volumes of brain MRI
were selected for each class from the Alzheimer’s disease
neuroimaging initiative (ADNI) database;17 health condition
was determined within the database using the Mini-Mental
State Examination score, with ranges 28–30 for HC, 25–27
for MCI, and 21–25 for AD. The three populations were paired
by age, between 68 and 85 years. Images were obtained with
1.5T and 3T systems following a T1 protocol and were in
some cases interpolated with a cubic function to achieve
a 1-mm3 isotropic sampling resolution.

2.2 Segmentation

Brain images were globally segmented to extract three main
structures: GM, WM, and cerebrospinal fluid (CSF), using a
nonparametric technique of probability density function estima-
tion, based on the mean-shift algorithm.18 The procedure begins
by filtering the data with a modified mean-shift method that
incorporates edge-confidence maps, in order to obtain the dis-
tribution modes without any a priori information. Afterward, an
adjacency graph is constructed and analyzed to fuse those regions
belonging to the same class, given spatial and intensity similarity

measures; a final step is applied to prune regions whose size is
below a certain threshold, assigning them to the nearest class.
Brain tissues’ classification is carried out by considering ana-
tomical atlases with the Statistical Probability Mapping (SPM)
software.19 The outcome of this procedure is a set of images,
where GM, WM, and CSF are segmented and from these we
construct the global anatomical volumes that will be measured
using compactness indices. Also, a more detailed separation of
these structures is accomplished by using the Individual Brain
Atlases using Statistical Parametric Mapping (IBASPM),20,21

that uses templates containing those substructures belonging
to the frontal, temporal, parietal, and occipital lobes. These tem-
plates are registered to the same data space and applied to
delimit the substructures corresponding, for both hemispheres,
to frontal (FR, FL), temporal (TR, TL), parietal (PR, PL), and
occipital (OR, OL) lobes. These regions, together with WM and
GM, give a total of 10 brain structures to be characterized.

2.3 Features

The classical compactness measure for a 3-D object is defined
from the enclosing surface area and the volume with the follow-
ing ratio: area3∕volume2; it is a normalized dimensionless mea-
sure, minimized by a sphere. This compactness measure is easy
to compute for 3-D shapes, but is very sensitive to a noisy perim-
eter or enclosing area.22 The 3-D DC23,24 is a more robust
measure, because it is more dependent on the object’s interior
than on its external characteristics. It considers the surface
area of those voxels that make contact in 3-D; it varies between
0 and 1 and is defined for 3-D shapes as

DC ¼ n − ðA∕6Þ
n −

ffiffiffiffiffi

n23
p ; (1)

where n is the number of voxels and A is the enclosing surface of
the object. In this case, maximal compactness is one and corre-
sponds to a cube, whereas minimal compactness is zero and cor-
responds to an object having all its voxels disjoint. Figure 1
shows the example of an object with different shapes but with
the same number of voxels. The variation of its compactness
measure can be appreciated as the object “spreads” spatially; the
decrease of compactness can be observed from (a) to (d), dem-
onstrating the measure’s sensitivity to the object’s deformation.

The compactness measure has the following properties:

• It can be applied to connected and disconnected objects.

• It is translation, rotation, and scaling invariant.

• It is easily computed by direct application of Eq. (1) for
3-D objects.

• It is normalized between 0 and 1.

This index was employed to globally and locally characterize
and differentiate brain structures in healthy subjects and in
patients with some pathology affecting brain morphology. For
this application, translation and rotation invariances are important
to represent the brain shape in a population, where subject posi-
tioning can vary during image acquisition. Also, scale invariance
and index normality are useful properties, because the compari-
son of compactness of brain tissue in different subjects can be
carried out, regardless of size but not of shape.

Additionally, the NV was obtained for each structure; this
measure has been widely used in the literature to determine
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size changes during aging; it is computed as the ratio of the vol-
ume of a given brain structure to the total intracranial volume.25

2.4 Classification and Feature Selection

SVMs are used in pattern recognition in a great number of
applications due to their robustness and learning ability from
experimental data.26 SVM separates a given set of binary-labeled
training data by means of a feature-space hyperplane that is
maximally distant from the training samples of the two classes.
Details of this classification model can be found elsewhere.27–29

Three SVM classifiers with Gaussian kernel were designed
using the publicly available libSVM library,30 optimized for
pairwise classification of the three populations: HC versus
MCI, MCI versus AD, and HC versus AD, using fivefold
cross-validation. Misclassification cost C and kernel width
gamma for the SVMs were selected by the grid-search method.
For each class pair, SVMs were constructed independently from
the 10 NV and the 10 DC features. Additionally, a sequential
forward selection (SFS) algorithm31 seeking to maximize the
classification rate was used to obtain optimal feature subsets
for NV, DC, and combined NV + DC measures. For the three
trained SVMs, expected performance (mean� std) was deter-
mined by computing classification accuracy [percent correct
(PC)] and AUC from a fivefold cross-validation run.

3 Results

3.1 Descriptive Statistics of Indices

Three segmented brains corresponding to one representative
example for each analyzed group are shown in Fig. 2. The intra-
cranial volume was determined by adding the three segmented
volumes (GM, WM, and CSF) and yielded 1430.6�140.1cm3

for HC, 1317.6� 122.2 cm3 for MCI, and 1347.5� 158.3 cm3

for AD. The 3-D reconstructions (right column in Fig. 2) corre-
spond to GM, and the associated DC and NV values are also indi-
cated. The decrease of volume that appears from normal to AD
subjects can be observed both visually and quantitatively, together
with a corresponding decline of the compactness measure.

Table 1 shows the NVand DCmeasures for all the segmented
regions (to facilitate the data presentation, all measures were
scaled by a factor of 1000). Each column displays the measured
indices for each population. Asterisks (*) indicate the significant

differences between the group and AD, whereas crosses (+)
specify the differences with respect to the MCI population.

3.2 Classification Power of Indices

The areas under the ROC curves for individual indices, mea-
sured to discriminate between populations, are shown in Table 2.
The rows indicate all the segmented structures, whereas the col-
umns indicate the comparison of populations by pairs: the first
three correspond to the NV measurements and the last three to
the DC indices.

Three classifiers were designed for pairwise separation
between populations. The estimated classification performance
is reported in Table 3 (first row: HC versus MCI; second row:
HC versus AD; third row MCI versus AD) in terms of PC and
AUC (mean� std). Columns show these measures for classi-
fiers built from different feature sets: NV only, DC only, and
combined NV + DC. In the first two cases, performance for
the full feature set (FFS) and the optimal feature set (OFS) is
shown; in the last case, only OFS results are presented, since
the use of the 20 features altogether provides poor classification.
Optimal feature sets are shown in Table 4, as obtained from the
SFS algorithm for each classifier. Columns indicate whether
a feature from the full set was selected or not in each case.

4 Discussion
The main contribution of this work consists of the introduc-
tion of a 3-D morphological descriptor (the DC), beyond the
standard use of volume measures that significantly improves
the aging stage classification from segmented MRI volumes.

As a first step, we observed that the mean intracranial volume
obtained for HC, MCI, and AD populations did not show

Fig. 1 Example of the three-dimensional (3-D) discrete compactness
(DC) measure on a synthetic shape that is gradually disagregated
[(a) to (d)], while keeping the same number of voxels.

(a)

(b)

(c)

Fig. 2 MRI segmentations for HC (a), MCI (b), and AD (c) subjects.
For each section, first row: original slices; second row: gray matter
(GM) (in gray) and white matter (WM) (in white) segmented regions;
right column: GM 3-D reconstructions with their corresponding DC
and NV measures.
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statistically significant differences according to the ANOVA
test; this may be due to the high variability of the populations
in terms of size and weight. Heckemann et al.11 found a stable
intracranial volume for the three groups, although with some
differences between MCI and AD populations; they recommend
the normalization of brain volumes to reduce size and gender
intragroup variations. Therefore, in this work, all volumes were
normalized.

When the segmentation of structures in the studied popula-
tions was carried out, a gradual change in size and shape of GM
and WM is observed, as the aging process increases (Fig. 2); the

deformation caused by the pathology was also observed in the
segmentation of the four lobes: frontal, occipital, parietal, and
temporal. Although the applied segmentation method has been
thoroughly validated for normal brain MRI, obtaining high sim-
ilarity indices with respect to manual segmentations,18 it has yet
to be validated in abnormal brains.

In order to test the separation capability between the three
studied populations, the DC index was compared with NV.
First, a global analysis considering only GM and WM was
performed; when applying ANOVA and Tukey tests between
populations (HC, MCI, and AD), a slightly different behavior

Table 1 Distribution of image features for both populations under study ðmean� standard deviation × 1000Þ.

Normalized volume (NV) Discrete compactness (DC)

HC MCI AD HC MCI AD

GM 424.4� 21.1* 411.1� 21.8* 382.2� 26.2 854.6� 11.4* 843.7� 13.2* 820.5� 21.1

WM 313.5� 25.3* 317.5� 26.7* 276.2� 22.1 891.1� 4.6* 891.2� 7.1* 877.1� 7.6

FR 67.67� 11.52 67.45� 9.29 62.04� 9.57 872.04� 11.86* 864.48� 15.23* 849.62� 15.24

FL 63.85� 11.64 61.92� 7.73 59.45� 6.99 872.82� 9.59* 864.51� 14.75* 848.25� 12.85

OR 22.97� 3.64 23.07� 4.29 21.51� 3.21 896.21� 15.16* 882.40� 20.78* 861.78� 19.72

OL 21.03� 4.07 20.50� 3.81 19.21� 2.85 898.29� 15.47* 886.13� 22.90* 862.69� 21.16

TR 39.98� 8.47* 39.13� 7.43 35.96� 5.92 909.01� 8.06*+ 896.52� 14.04* 881.06� 16.17

TL 41.97� 8.71* 40.84� 8.00 37.19� 6.31 911.68� 9.01*+ 899.98� 13.45* 884.53� 14.41

PR 34.78� 5.53 36.01� 6.84 32.60� 4.00 867.87� 14.68*+ 854.79� 19.00* 834.59� 17.37

PL 37.18� 7.30*+ 36.22� 6.04 33.52� 3.96 869.60� 16.03*+ 853.15� 19.34* 835.25� 15.48

Note: Abbreviations: HC, healthy controls; MCI, mild cognitive impairment; and AD, Alzheimer’s disease; GM, gray matter; WM, white matter; FR,
frontal right; FL, forntal left; OR, occipital right; OL, occipital left; TR, temporal right; TL, temporal left; PR, parietal right; PL, parietal left.
Group comparisons using ANOVA and Tukey statistical tests at significance level ðp < 0.05Þ.
* indicates the significant differences compared with the AD group
+ indicates the significant differences compared with the MCI group.

Table 2 Area under ROC curves (AUC) measuring the discrimination capability of individual indices among segmented regions.

AUC NV AUC DC

HC/MCI HC/AD MCI/AD HC/MCI HC/AD MCI/AD

GM 0.69� 0.06 0.89� 0.04 0.79� 0.06 0.74� 0.06 0.92� 0.03 0.82� 0.06

WM 0.45� 0.07 0.88� 0.04 0.90� 0.04 0.47� 0.07 0.95� 0.02 0.91� 0.03

FR 0.51� 0.07 0.64� 0.06 0.64� 0.07 0.64� 0.06 0.88� 0.02 0.77� 0.06

FL 0.56� 0.07 0.61� 0.06 0.57� 0.07 0.69� 0.07 0.94� 0.02 0.81� 0.06

OR 0.53� 0.07 0.64� 0.06 0.59� 0.07 0.68� 0.06 0.93� 0.03 0.76� 0.06

OL 0.57� 0.07 0.66� 0.06 0.60� 0.07 0.63� 0.06 0.91� 0.03 0.79� 0.06

TR 0.52� 0.07 0.65� 0.07 0.63� 0.07 0.79� 0.06 0.95� 0.02 0.77� 0.06

TL 0.52� 0.07 0.67� 0.06 0.64� 0.07 0.76� 0.06 0.95� 0.03 0.79� 0.06

PR 0.49� 0.07 0.66� 0.06 0.64� 0.06 0.67� 0.06 0.93� 0.03 0.77� 0.06

PL 0.55� 0.07 0.68� 0.06 0.61� 0.06 0.73� 0.06 0.93� 0.02 0.76� 0.06
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between the two indices (Table 1) can be observed: NVand DC
indices for GM are only different between HC versus AD
and MCI versus AD. Our results are consistent with those
found and reported by Heckemann et al.,11 relative to the
NV parameter. With respect to the measurements made in
WM, statistical differences were found in HC versus AD
and MCI versus AD comparisons (Table 1); the consistency
of the compactness index for the three populations and their
small variance (�4.6 to �7.6) can be noticed. Moreover,
the studies found in the literature7,11 reported an increase in
the volume of the cerebral ventricles, which in turn causes
changes in the WM volume and shape. However, these results
should be taken with caution, as several authors reported a
significant change in the intensity of WM observed with the
MR technique,8,11 due to the normal or pathological aging
process.

On the other hand, several studies report the differences in
lobes NV between the groups of HC, MCI, and AD;11 in a
more detailed analysis, a reduction in substructures, such as
the amygdala and the middle and inferior temporal gyri, and
ventricular dilation affecting the temporal area are also reported.

Liu et al.4 reported that the main differences are found in the
ventricular system, hippocampus, amygdala, and entorhinal
cortex; the latter are the temporal lobe subregions. This is
clear evidence that the most affected structure by AD is the
temporal lobe, which is consistent with the results reported in
Table 1. We can observe significant differences between HC
and AD in the temporal and left parietal lobes, whereas between
HC and MCI the only differences found are in the left pari-
etal lobe.

When the statistical tests were carried out, we observed sig-
nificant differences between HC, MCI, and AD subjects in the
temporal and parietal lobes; this supports the sensitivity of the
compactness indices to morphological changes in these lobes.
On the other hand, the frontal and occipital lobes only presented
differences between HC versus AD and MCI versus AD, which
suggests that the compactness measure can discriminate these
groups. Some researches report that the volume changes of the
amygdala can vary between 14% and 44% and this can be useful
as an AD predictor.4 Other author8 indicate that the hypothala-
mus is the most affected region in AD and that, by combining
a manual volume segmentation of the hypothalamus with the

Table 3 Support vector machine (SVM) classification performance, reported as AUC and percent correct (PC) in each row. Columns correspond to
classifiers using NV, DC, and combined NV + DC features. FFS: full feature set; OFS: optimized feature set.

NV DC NV + DC

FFS OFS FFS OFS OFS

HC versus MCI AUC 0.51� 0.01 0.57� 0.04 0.69� 0.14 0.77� 0.14 0.80� 0.03

PC (%) 58.33� 10 70� 13 70� 13 76.66� 13 85� 10

HC versus AD AUC 0.91� 0.08 0.93� 0.06 0.96� 0.03 0.96� 0.03 0.97� 0.03

PC (%) 81.66� 12 88.33� 7 93.33� 3 95� 4 98.33� 3

MCI versus AD AUC 0.66� 0.1 0.93� 0.06 0.83� 0.04 0.94� 0.06 0.95� 0.04

PC (%) 78.33� 20 90� 6 80� 15 91.66� 8 93.33� 6

Table 4 Optimal features selected with SFS for each classifier case.

Relevant features

GM WM FR FL OR OL TR TL PR PL

HC versus MCI NV x x - - x - - - x x

DC o o - o - - o o - o

NV + DC o xo - - - - o o - o

HC versus AD NV x x x x x x x - x -

DC o o - - - o o o - -

NV + DC xo xo - - - o o o - -

MCI versus AD NV x x - - - - - - - -

DC o o o o - - o - o -

NV + DC xo x o o - - o - o -

Note: “x” indicates that the NV feature for the corresponding region was selected; “o” indicates that the DC feature for the corresponding region was
selected; “-” indicates that the feature was not selected.
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volume of other structures, a sensitivity of up to 90% and a
specificity of up to 94% can be attained. This leads to classifi-
cation rates ranging between 80% and 90% for the separation of
HC and AD populations.

With the purpose of showing the real discrimination capabil-
ity of the measured indices to separate the three studied popu-
lations, the sensitivity and specificity were determined for each
index and the ROC curves were obtained for all structures;
the corresponding areas under the ROC curves are shown in
Table 2. It is convenient to recall that an AUC of 0.5 represents
a random selection and a poor discriminative power, while
a unitary AUC corresponds to an excellent class separation.

For the classification between HC and MCI groups, none of
the NV show a good separation, it being the AUC of the
GM with the highest value (0.69). The corresponding DCs
(column 4 of Table 2) show that GM, TR, TL, and PL could
be good representative structures to highlight changes (>0.73)
between HC and MCI subjects.

The classification capability of NV and DC is higher when
discriminating between HC and AD in global GM and WM
analyses. The tested indices seem to provide a better selection
power between these two populations and this is corroborated
by the AUCs that are above 0.8 (first and second rows in
Table 2). In particular, it is remarkable that the DC of WM and
GM has AUCs that exceed the threshold of 0.9, which is much
higher than that of the NVAUCs. With respect to the lobes’ DC
indices, AUCs of up to 0.95 for both left and right temporal
lobes were obtained. AUCs of 0.93 and 0.91 for the amygdala
and the medial temporal gyrus, respectively, by contrasting HC
with AD have been reported elsewhere.16

In the comparison of MCI versus AD (columns 3 and 6 in
Table 2), the higher AUCs correspond to global GM and WM.
In particular, measures of compactness for these two structures
have a higher AUC (0.82 in GM and 0.91 in WM), as well as
the NV for WM, which has an AUC of 0.9. At the lobe level, it
can be seen that the compactness index is a better discriminator
than the volume measure, showing an AUC of 0.81 for the left
frontal lobe and 0.79 for the left temporal and occipital lobes.
In the study published by Chincarini et al.,16 an AUC of 0.92 is
reported, using a classification index composed of several volu-
metric parameters, for the discrimination between subjects
with stable MCI and AD patients. Furthermore, Teipel et al.32

measured the capability of discrimination between these two
populations, using as indices of classification the right hippo-
campus and amygdala volumes, which are structures that show
significant changes in the process of pathological aging. These
authors reported an AUC for the hippocampal volume of only
0.78 and of 0.65 for the case of the amygdala.

These results show that the compactness index can be useful
for the selection between populations of HC, MCI, and AD,
because it is sensitive to shape changes presented by different
brain regions, whereas NV is an indicator that reflects the reduc-
tion of tissue, regardless of the shape changes. With these
findings, we were able to establish a discrimination strategy
that combines an optimized SVM classification model and
an optimal selection of features. In Table 3, we can observe
that for all features tested, the optimal selection carried out
with SFS gives a better classification behavior. On the other
hand, DC features better discriminated the three pairwise clas-
sifications compared with NVs. The higher performance rates
were obtained using NV + DC selected features (last column in
Table 3): for HC versus MCI classification, we obtained an 85%

accuracy with an AUC of 0.8; previous reports in this case go
from 47% to 88%15,33 accuracy and AUCs between 0.73 and
0.92.16,34 These results must be improved, especially because
the differentiation of these two aging stages is of particular
clinical importance.

For the case of HC versus AD classification, our proposed
scheme achieves up to 98% accuracy with AUC of 0.97.
Previously published works report accuracies in the range of
58% to 94%15,33,35,36 and AUC of 0.9716 with various feature
sets and other invasive imaging modalities; therefore, for the
separation of these two groups, our proposal outperforms
other reported methods.

Finally, for the MCI versus AD classification, our best results
were 93% accuracy and 0.95 AUC; in contrast, other authors
have reported 66% accuracies33 and AUC of 0.79.34 In a recent
study, Martínez Torteya et al.37 reported a 96% accuracy when
measuring MCI to AD conversion, using several imaging and
genetic biomarkers.

As can be observed in Table 4, the proposed compactness
index is highly relevant for classification purposes. It can
also be seen that for all the tested classifiers, the feature selection
process includes both the temporal right and left lobes, implying
that these structures are useful to discriminate between all
groups in accordance with known neurophysiology.8,11,12

5 Conclusions
The main contribution of this work consists of the introduction
of a 3-D morphological descriptor (the DC) beyond the standard
use of volume measures that significantly improves the aging
stage classification from segmented MRI volumes. Our results
show that the proposed compactness index is sensitive to
changes in shape but not to an object’s size, so that noticeable
differences appear between the mean indices obtained for the
studied populations, especially in the temporal lobe. These
results suggest that the proposed index can be a reliable com-
plementary parameter to discriminate between normal and
abnormal aging processes together with volumetric indices
that are commonly used in the clinical environment.

The 3-D DC has shown to be relevant for age staging, and
increasing performance over volume-based and non-MRI based
approaches is reported. This is supported by an adequate selec-
tion of a classifier model, which has been thoroughly validated,
and the optimal selection of the features being used. Class sep-
aration for the MCI and AD groups with the presented method
outperforms the previous results, whereas the other group com-
parisons are similar to those reported elsewhere. Discrimination
between these two classes might prove relevant for therapeutic
decisions. However, the important discrimination between HC
and MCI has yet to be improved. In future work, a combined
classifier with multiple outputs must be developed, and other
biomarkers considered important for abnormal aging identifica-
tion must be included in the classification process.
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