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Abstract. Computer-aided segmentation of cardiac images obtained
by various modalities plays an important role and is a prerequisite
for a wide range of cardiac applications by facilitating the delineation
of anatomical regions of interest. Numerous computerized methods
have been developed to tackle this problem. Recent studies employ
sophisticated techniques using available cues from cardiac anatomy
such as geometry, visual appearance, and prior knowledge. In addi-
tion, new minimization and computational methods have been
adopted with improved computational speed and robustness. We
provide an overview of cardiac segmentation techniques, with a goal
of providing useful advice and references. In addition, we describe
important clinical applications, imaging modalities, and validation
methods used for cardiac segmentation. © 2012 SPIE and IS&T.
[DOI: 10.1117/1.JEI.21.1.010901]

1 Introduction
Noninvasive cardiac imaging is an invaluable tool for the
diagnosis and treatment of cardiovascular disease (CVD).
Magnetic resonance imaging (MRI), computed tomography
(CT), positron emission tomography (PET), single photon
emission computed tomography (SPECT), and ultrasound
(US) have been used extensively for physiologic understand-
ing and diagnostic purposes in cardiology. These imaging
technologies have greatly increased our understanding of
normal and diseased anatomy. Cardiac image segmentation
plays a crucial role and allows for a wide range of applica-
tions, including quantification of volume, computer-aided
diagnosis, localization of pathology, and image-guided
interventions. However, manual delineation is tedious, time-
consuming, and is limited by inter- and intraobserver
variability. In addition, many segmentation algorithms are
sensitive to the initialization and therefore the results are
not always reproducible, which is also limited by interalgo-
rithm variability. Furthermore, the amount and quality of
imaging data that needs to be routinely acquired in one or

more subjects has increased significantly. Therefore, it is
crucial to develop automated, precise, and reproducible
segmentation methods. Figure 1 illustrates an example of
segmentation of heart on CT scan.

A variety of segmentation techniques have been proposed
over the last few decades. While earlier approaches were
often based on heuristics, recent studies employ more sophis-
ticated and principled techniques. However, cardiac image
segmentation still remained a challenge due to the highly
variable nature of cardiac anatomy, function, and pathology.2

Furthermore, intensity distributions are heavily influenced
by the disease state, imaging protocols, artifacts, or noise.
Therefore, many researchers are seeking techniques to
deal with such constraints. The research in cardiac image
segmentation ranges from the fundamental problems of
image analysis, including shape modeling and tracking, to
more applied topics such as clinical quantification, compu-
ter-aided diagnosis, and image-guided interventions.

In this review, we aim to provide an overview on cardiac
segmentation methods applied to images from major nonin-
vasive modalities such as US, PET/SPECT, CT, and MRI.
We focus on the segmentation of the cardiac chambers
and whole heart applied to static and gated images (obtained
through the cardiac cycle). In addition, we also discuss
important clinical applications, characteristics of imaging
modalities, and validation methods used for cardiac segmen-
tation. We do not discuss coronary vessel tracking, which is a
separate topic. We hope that this article can serve as a useful
guide to recent developments in this growing field. The
review is organized as follows. The clinical background
of cardiac image segmentation is discussed in Sec. 2. Numer-
ous segmentation methods are described in Sec. 3. Cardiac
imaging modalities are reviewed in Sec. 4. Approaches to
validation of the segmentation results are discussed in
Sec. 5. Concluding remarks are given in Sec. 6.

t = 1/10 of a cardiac cycle    t = 2/10 of a cardiac cycle           t = 3/10 of a cardiac cycle          t = 6/10 of a cardiac cycle

A view of trunk of the human body (the first column) and 3 different orthogonal plane views (the right three columns)

Fig. 1 An example of heart chamber segmentation in 3-D contrast CT volumes with green line delineation for the LV endocardium, magenta for the
LV epicardium, cyan for the left atrium (LA), orange for the right ventricle (RV), and blue for the right atrium (RA).1 The first row shows a full torso
view (the first column) and the closeup view (the right three columns) of three orthogonal cuts from 3-D volume data. The four images in the second
row show the tracking results for the heart chambers on a dynamic 3-D sequence with 10 frames. (Reproduced from Y. Zheng et al. with permission
of ©2008 IEEE.)
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2 Clinical Background
CVD is the major cause of morbidity and mortality in the
western world. More than 2,200 patients die of CVD each
day in the United States alone.3 CVD involves a variety of
disorders of the cardiac muscle and the vascular system. The
common causes of CVD include ischemic heart disease and
congestive heart failure.4 Cardiac imaging has played a cru-
cial and complementary role to the diagnosis and treatment
of patients with known or suspected CVD. In the case of
ischemic heart disease, the first consequence of the disease
is the changes in the myocardial perfusion assessed by
SPECT and PET or by MRI.5 In particular, the perfusion
deficit leads to metabolic changes in myocardial tissues
assessed by PET. A myocardial ischemia could further
diminish ejection of blood because of the reduced capacity
of the heart as analyzed by the myocardial contractile func-
tion using US, PET/SPECT, CT, or MRI.

Assessment of the left ventricle (LV) contractile function
is essential for diagnosis and prognosis of CVD. The LV
contractile function is commonly analyzed as it pumps oxy-
genated blood to the entire body.6,7 The computer-aided or
fully automated segmentation of the ventricular myocardium
is generally used to standardize analysis and improve the
reproducibility of the assessment of contractile cardiac func-
tion.8 In addition, it forms an important preliminary step to
provide useful diagnostic information by quantifying clini-
cally important parameters, including end-diastolic volume
(EDV), end-systolic volume (ESV), ejection fraction (EF),
wall motion and thickening, wall thickness, stroke volume
(SV), and transient ischemic dilation (TID).9 Furthermore,
segmentation of the LV is necessary for the quantification
of myocardial perfusion,10 the size of the myocardial
infarct,11 or myocardial mass.12 Accurate determination of
these parameters can help with a variety of diagnostic or
prognostic applications in cardiology.

In addition to the LV segmentation, the whole heart,
including the right ventricle, atria, aorta, and pulmonary
artery13 is often segmented for 3-D visualization purposes to
analyze coronary lesions or other cardiac abnormalities.

The primary application of cardiac segmentation has been
the measurement of cardiac function. The most commonly
used index of LV contractile function is the EF, which is the
index of volume strain (change in volume divided by initial
volume).7,14 The EF can be derived from EDV and ESV
given by

EFð%Þ ¼ EDV − ESV

EDV
× 100; (1)

where EF can be measured by gated SPECT/PET, US, MRI,
or CT. SV is related to EF calculated by subtraction of ESV
from EDV. SV also correlates with cardiac function and is a
determinant of cardiac output. Assessment of the LV regional
wall motion and thickening plays an important role in the
assessment of contractile cardiac function at rest, during
stress-induced ischemia, and of its viability.15–18 Methods
to quantify wall motion can rely on detecting endocardial
motion by observing image intensity changes, determining
the boundary wall of the ventricle, or attempting to track ana-
tomical myocardial landmarks.19 Wall thickening (WT) is
usually measured using centerlines,15,16 which can be defined
in terms of percentage of systolic thickening and calculated
per landmark point as

WT ð%Þ ¼ wes − wed

wed

× 100; (2)

where wes and wed are myocardial wall thicknesses (the
distance from endocardial and epicardial contours) at end
systolic and end diastolic, respectively.13 Moreover, TID of
LV is a specific and sensitive parameter for detecting severe
coronary artery disease (CAD).20 TID is defined as the ratio
of volume of blood pool after stress compared with rest. TID
has been mostly measured by SPECT.20

3 Segmentation Techniques
In this section, we review several techniques for the segmen-
tation of heart chambers and the whole heart. Cardiac image
segmentation techniques can be divided into four main
categories: (1) boundary-driven techniques, (2) region-based
techniques, (3) graph-cuts techniques, and (4) model fitting
techniques, in which multiple techniques are often used
together to efficiently address the segmentation problem.
We describe the methods in each category, and discuss their
advantages and disadvantages.

3.1 Boundary-Driven Techniques
3.1.1 Active contours (or snakes)

Boundary-driven segmentation techniques are based on the
concept of evolving contours, deforming from the initial to
the final position. One of the most widely used methods is
the “active contour” model, which is also referred to as
“snakes.”21 The active contour model allows a curve defined
in the image domain to evolve under the influence of internal
and external forces. The internal force is imposed on the con-
tour in order to control the smoothness while the external
force is usually derived from the image itself. An edge detec-
tor function is utilized as the external force in the classical
active contour model. Most active contour models only
detect objects with edges defined by the gradients. Kass
et al.21,22 were the first to formulate the classical active con-
tour model using an energy minimization approach. The
active contour model seeks the lowest energy of an objective
function, where the total energy of the active contour model
is defined as

Etotal ¼ Ein þ Eex; (3)

where Ein denotes the internal energy incorporating prior
knowledge such as smoothness or a particular shape and
Eex represents the external energy describing how well the
curve matches the image data locally. A curve vðsÞ can be
represented as

vðsÞ ¼ ½xðsÞ; yðsÞ�; 0 ≤ s ≤ 1: (4)

With such a representation, the internal and external energies
can be formulated as

Ein ¼
Z

1

0

Ein½vðsÞ�ds and Eex ¼
Z

1

0

Eex½vðsÞ�ds; (5)

where EinðvðsÞÞ can be given by

EinðvðsÞÞ ¼ αðsÞ
���� dvds

����2ðElasticityÞ þ βðsÞ
���� d2vds2

����2ðStiffnessÞ;
(6)
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and one example of external energy is

Eex½vðsÞ� ¼ −fjGx½vðsÞ�j2 þ jGy½vðsÞ�j2g: (7)

A simple edge detector is used in Eq. (7) to formulate the
external energy term Eex, where Gx and Gy denote the gra-
dient images along x and y axes, respectively.

An example of the evolving 2-D contours obtained by
applying the active contour model to a sequence of US of
the LV is shown in Fig. 2. These contours deform gradually
to the exact object boundaries by minimizing the energy of
the active contour model. Although the active contour model
has been a seminal work, it has some limitations. For
instance, it is sensitive to the initialization as the contour
may get stuck to a local minimum near the initial contour.
The curve may pass through the boundary of the field of
view of the image when the image has high amounts of
noise. In addition, the accuracy of the active contour model
depends on the convergence criteria employed in the mini-
mization technique. A few attempts have been made to
improve the original model by adopting new types of exter-
nal field, including gradient vector flow23 and the balloon
model.24

3.1.2 Geodesic active contour

The original active contour model can be expressed as the
geodesic active contour26–29 using level set formulation.30

This method enables an implicit parameterization, allowing
automatic changes in the topology. The geodesic active
contour is an extended version of the geometric active con-
tours31 by using geometric flow to shrink or expand a
curve. It allows stable boundary detection when the

image gradients suffer from large variations.26 The problem
of fitting a contour is equivalent to finding geodesics of the
minimal distance curves by minimizing the intrinsic energy
given by

EðvÞ ¼
Z

1

0

gfj∇I½vðpÞ�jgjv 0ðpÞjdp

¼
Z

LðvÞ

0

gfj∇I½vðpÞ�jgds; (8)

where ds ¼ jv 0ðpÞjdp, g is an edge indicator function, e.g.,
g ¼ 1

1þj∇Îjp (p ≥ 1) and L ¼ ∫ 1
0k ∂v

∂p kds is the curve length

functional. Î is a smoothed version of I. The corresponding
geodesic active contour model is given by

∂ϕ
∂t

¼ gðIÞj∇ϕj
�
div

�
∇ϕ
j∇ϕj

�
þ k

�
þ ∇gðIÞ · ∇ϕ; (9)

where ϕ is an implicit representation of the curve v that is
explained in Sec. 3.2.2, and k is a positive real constant
that is related to the constant curve velocity term
cgðIÞj∇uj. The term ∇gðÞ · ∇ϕ is adopted to improve
the geometric flow and tackle the problem caused by
low-contrast edges.26

The geodesic active contour with the level-set representa-
tion has become the basis of many boundary-driven segmen-
tation techniques developed in the last decade.32,33 Although
the geodesic active contour model has been applied to
cardiac image segmentation, it has several limitations.32,33

One example is the sensitivity of the computed gradient

Selected frames from one cardiac cycle.

Fig. 2 Short axis ultrasound images illustrating the tracking of the endocardial border by the active contour technique.25 An initial contour evolves
to the final contour as indicated by the white dotted line in each image. (Reproduced from I. Mikic et al. with permission of ©1998 IEEE.)
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value to noise because the differentiation of gray levels tends
to magnify noise.

3.2 Region-Based Techniques
In the region-based segmentation techniques, regions of
interest, including chambers from extracardiac structures,
are partitioned by a selected global model that provides
approximations of the region of interest. In other words,
the global information defined within the region of interest
is used to differentiate the region of interest from others by
global homogeneity regional properties.34,35 Hybrid techni-
ques that combine the region-based and boundary-based
information have also been proposed to enhance the segmen-
tation performance.

3.2.1 Mumford-Shah functional

Mumford and Shah36 proposed a functional utilizing a pie-
cewise smooth model. The functional of the piecewise model
is smooth within regions yet may not be always smooth
across the boundaries. The Mumford-Shah functional is
defined as:

Eðf ;CÞ ¼ λ

ZZ
R
ðf ðx; yÞ − Iðx; yÞÞ2dxdy

þ
ZZ

R−C

���∇f ðx; yÞ���2dxdyþ μjCj; (10)

where λ and μ are positive parameters, jCj is the boundary
length, R is a domain, and f ð·; ·Þ is a piecewise smooth func-
tion that approximates Ið·; ·Þ and is also a solution image by
minimizing the Eq. (10). The first term represents the data
term that measures a dissimilarity between the input image
and the solution image, the second is a smoothing term
except at image discontinuities, and the third smoothes
boundaries C. In this energy functional, the discontinuities
of the boundaries are expressed explicitly.

This segmentation model has some drawbacks. It is com-
putationally expensive37 and is not robust in the presence of
strong noise and/or missing information. To circumvent
these limitations, a fuzzy algorithm was introduced in the
Mumford-Shah segmentation using the Bayesian and Max-
imum A Posteriori (MAP) estimator.38 Prior knowledge has
also been incorporated39–42 to overcome the problem of noise
and/or missing information that commonly occurs in medical
imaging.

3.2.2 Level-set based technique

Unlike the parametric representation, the level-set frame-
work represents curves implicitly as the zero level set of a
scalar function proposed by Osher and Sethian.43 Following
the introduction of the level-set framework, Sethian,30,44

Osher and Fedkiw,45 and Osher and Paragios46 built a
solid foundation of the level-set representation applied to
a variety of problems. An example of LV segmentation
using the level-set method is depicted in Fig. 3. The repre-
sentation for contour evolution in the level-set framework is
implicit, parameter-free, and intrinsic. Let Ω ⊂ Rn, where n
is 2 or 3, denote the image domain. A contour C ⊂ Ω can be
represented by the zero level set of a higher-dimensional
embedding function ϕðxÞ∶ Ω → R as given by

(C ¼ fx ∈ ΩjϕðxÞ ¼ 0g
interiorðCÞ ¼ fx ∈ ΩjϕðxÞ > 0g
exteriorðCÞ ¼ fx ∈ ΩjϕðxÞ < 0g

; (11)

where ϕðxÞ is a signed distance function that imposes j∇ϕj ¼
1 almost everywhere. The contour evolution equation is then
given by

dC
dt

¼ F ~n; (12)

where ~n denotes the outward unit vector normal of C and F
denotes a speed function.

The interface is the zero level of ϕ (i.e., ϕðCðtÞ; tÞ ¼ 0 for
all t). An evolution equation for ϕ then can be derived using
~n ¼ ∇ϕ

j∇ϕj as

∂ϕ
∂t

¼ −Fj∇ϕj: (13)

The contour evolution dC
dt ¼ F ~n corresponds to an evolu-

tion of ϕ given by ∂ϕ
∂t ¼ −Fj∇ϕj. The level-set based seg-

mentation method has been extensively utilized in the
image segmentation problems due to a variety of advantages:
it is parameter free, implicit, can change the topology, and
provides a direct way to estimate the geometric properties.
In addition, a large amount of effort has been made for its
performance improvement.27,29,31,47–50

In boundary-driven techniques, the gradient is used as a
criterion to stop the curve. However, there are objects whose
boundaries cannot be defined, such as smeared boundaries.
Chan and Vese32 proposed a different model incorporating
an implicit energy functional in boundaries C with active
contours and the level-set representation by modifying the
Mumford-Shah functional, i.e.,

Eðf ;CÞ ¼
XN
i¼1

λ2
ZZ

Ri

½ciðx; yÞ − Iðx; yÞ�2dxdyþ μjCj; (14)

where a set of disjoint regions Ri cover R and f ðx; yÞ ¼
constant ci on ðx; yÞ ∈ Ri. N is the number of image partition-
ing. Equation (14) is minimized in ci by setting ci to the mean
of Ið·; ·Þ in Ri. In the case of the two partitioning regions
c1 and c2, the Euler-Lagrange derivation of Eq. (14) is
demonstrated by

∂ϕ
∂t

¼ δðϕÞ
�
μ div

�
∇ϕ
j∇ϕj

�
− jc1 − Ij2 þ jc2 − Ij2

�
; (15)

where δ is a Dirac delta function. Therefore, this energy
minimization process depends on regional constants ci
and the level-set function ϕ. μ ∈ Rþ is a balancing parameter
between data fidelity and regularization.

3.2.3 Clustering

Clustering algorithms have been used to group image pixels
of similar features in the image segmentation problems. The
resulting pixel-cluster memberships provide a segmentation
of the image. Clustering-based segmentation methods are
considered to be an old yet robust technique.51–54 One of
the widely used clustering techniques is the K-means algo-
rithm. This approach uses an objective function that
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expresses the performance of a representation for k given
clusters. If we represent the center of each image cluster
by mi and the j’th element in cluster i by xj, the objective
function can be defined as

Φðclusters; dataÞ ¼
X

i∈clusters

� X
j∈i0th cluster

ðxj − miÞTðxj − miÞ
�
:

(16)

Although this objective function produces k clusters, it may
not guarantee the convergence to the global minimum.55

Another clustering-based segmentation method is the
fuzzy c-means algorithm based on the K-means and fuzzy
set theory.56–58 The conventional fuzzy c-means method
does not fully utilize the spatial information of the image.
To cope with this limitation, an approach was developed
to incorporate the spatial information into the objective func-
tion by indicating the strength of association between each
pixel and a particular cluster (i.e., the probability that a pixel
belongs to a specific cluster) in order to improve the segmen-
tation results.59

In addition, the expectation-maximization (EM) algo-
rithm using the Gaussian mixture model is one of the
well-established clustering-based methods. The iterative
algorithm uses the posterior probabilities and the maximum
likelihood estimates of the means, covariances, and coeffi-
cients of the mixture model.60,61 Furthermore, the EM algo-
rithm can be combined with various models such as the
hidden Markov random field model in order to achieve
accurate and robust segmentation results.62 However, cluster-
ing-based methods have a few weaknesses. The methods are
sensitive to initialization, noise, and inhomogeneities of
image intensities.63

3.3 Graph-Cuts Techniques
The graph-cuts technique64,65 was originated from Greig's
maximum a posteriori (MAP) estimation66 in order to find

the maximum flow for binary images. An interactive
graph-cuts technique can find a globally optimal segmenta-
tion of an image. The user selects some pixels called “seed
points” as hard constraints inside the object to be segmented
as well as some pixels belonging to the background. The
objective function is typically defined by boundary and
regional properties of the segments. Therefore the obtained
segmentation provides the best balance of boundary and
region properties satisfying the constraints.65

In the graph-cuts theory,65 an image is interpreted as a
graph, where all pixels are connected to its neighbors.
Graph node set P and edge set Q connect nodes v ∈ P to
form a graph G ¼ fP;Qg. Terminals are two special
nodes, known as the source (s) and sink (t), which are the
start and end nodes of the flow in the graph, respectively.
Also, there are two types of edges: n-links that connect
neighboring pixels and t-links that connect pixels in
image to terminal nodes. The cost or weight we is assigned
to each edge, e ∈ Q. The costs of n-links are the penalties for
discontinuities between the pixels, and the costs of t-links are
the penalties for assigning the corresponding terminal to the
pixel. Thus, the total cost of the n-links represents the cost of
the boundary while the total cost of the t-links indicates the
regional properties. A cut X ⊂ Q is a set of edges that sepa-
rates the graph into regions connected to terminal nodes. The
cost of a cut is defined by the sum of the costs of edges that
belong to the cut, which is denoted by

jXj ¼
X
e∈X

we: (17)

Then optimal segmentation results using the graph-cuts
technique amount to finding the optimal solution for the
cost of a cut, i.e., a minimal cost cut. An example of medical
image segmentation using the graph-cuts techniques is illu-
strated in Fig. 4.

Several methods to find an optimal cost cut have been
proposed such as minimizing the maximum cut between

Selected frames from one cardiac cycle.

Fig. 3 The LV segmentation results for MR images by the level-set function with the visual information and anatomical constraints, where the
sequence of images corresponds to the same slice but in different moments of a cardiac cycle.35 (Reproduced from N. Paragios with permission
of ©2002 Springer Science and Business Media.)
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the segments68 and normalizing the cost of a cut.69 Boykov
and Kolmogorov70 proposed a max-flow/min-cut algorithm
and compared its efficiency with Goldberg-Tarjan's push-
relabel71 and Ford-Fulkerson's augmenting paths.72 Based
on the cut cost described above, the energy function can
be formulated, consisting of the boundary term and the regio-
nal term. Let lp be the label for a given pixel p, which can be
either an object or the background. Let S be a set of pixels
and N be a set of all pairs of neighboring elements. The
energy function73 for graph-cuts can then be given by:

EðlÞ ¼ EsmoothðlÞ þ EdataðlÞ; (18)

where

EsmoothðlÞ ¼
X
p;q∈N

Vpqðlp; lqÞ (19)

and

EdataðlÞ ¼
X
p∈S

DpðlpÞ; (20)

where Vpq denotes the cost of n-link between two pixels p
and q and Dp denotes the cost of t-link at pixel p. Esmooth is a
boundary term that imposes smoothness whereas Edata is a
region term that measures how well a label fits the data.
Vpq is the interaction function between neighboring pixels
p and q, and Dp is a log-likelihood function at pixel p.

One limitation of the graph-cuts technique is that it is
not fully automated, as it demands the initialization of seed
points in the object and the background regions.

3.4 Model-Fitting Techniques
The model-fitting segmentation attempts to match a pre-
defined geometric shape to the locations of the extracted
image features of an image. A two-step procedure is usually
needed in the model-fitting segmentation: (1) generating the
shape model from a training set and (2) performing the fitting
of the model to a new image. The models contain the infor-
mation about the shape and its variations. The main tasks in
the model-fitting are the extraction of the features and gen-
eration of the best fitting model from the features. Given an

accurate and appropriate model, the segmentation procedure
becomes an optimization problem of finding the best model
parameters for a given patient image. Human heart anatomy
exhibits specific features and therefore the similar shape or
intensity information about hearts can be utilized by means
of a shape-prior knowledge. Prior knowledge can be used
to compensate for common difficulties such as poor image
contrast, noise, and missing boundaries.

Integrating the prior knowledge using explicit shape
representation into segmentation process has been a topic
of interest for decades. For instance, global shape informa-
tion with closed curves represented by Fourier descriptors
was proposed where the Gaussian prior was assumed for
Fourier coefficients.74,75 The shape model was built by learn-
ing the distribution of Fourier coefficients. In addition, active
shape models (ASM) were used in a variety of segmentation
tasks.18,76–78 In brief, key landmark points on each training
image generate a statistical model of shape variation, and a
statistical model of intensity is built by warping each exam-
ple image to match the mean shape. Principal component
analysis (PCA) is applied on the key landmark points
where the sample distribution is assumed as a Gaussian
distribution. Any sample within the distribution can be
expressed as a mean shape with a linear combination of
eigenvectors.79 Cootes et al.76,80,81 built statistical models
by positioning control points across training images and
developed the active appearance model (AAM).82 An exam-
ple of image segmentation based on the AAM is illustrated in
Fig. 5. The landmark points should be placed in a consistent
way over a large database of training shapes in order to avoid
incorrect parameterization.77 Also, if the size of a training
set is small, the model cannot capture its variability and is
unable to approximate data that are not included in the train-
ing set.78 Furthermore, a statistical model is incorporated in
order to describe intersubject shape variabilities. For exam-
ple, the dimension of the parametric contours was reduced
by the use of PCA. By projecting the shape onto the shape
parameters and enforcing limits, global shape constraints
have been applied to ensure that the current shape remains
similar to that in the training set.76 Wang and Staib84

extended the work of Cootes et al.76 using a Bayesian frame-
work to adjust the weights between the statistical prior

Selected frames from one cardiac cycle with ED phase (left) and ES phase (right).

Fig. 4 LV segmentation examples for contrast cardiac CT images using the graph-cuts technique.67 The segmentation algorithm used here
combines the EM-based region segmentation, the Dijkstra active contours using graph-cuts, and the shape information through a pattern matching
strategy. The graph-cuts algorithm is used to cut the edges in the graph to form a closed-boundary contour between two different regions.
(Reproduced from M. P. Jolly with permission of ©2006 Springer Science and Business Media.)
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knowledge and the image information based on image qual-
ity and reliability of the training set. The B-splines based
curve representation was applied to the classical active con-
tours model.85–87

There have been several attempts to incorporate the prior
knowledge of shape in the implicit shape representation.
Leventon et al.88 incorporated the shape-prior information
in the level-set framework with a set of previously segmented
data using the signed distance function. A shape-prior model
was also proposed to restrict the flow of the geodesic active
contour, where the prior shape was derived by performing
the PCA on a collection of the signed distance function
of the training shape. A similar approach was proposed in
Ref. 89 with an energy functional, including the information
of the image gradient and the shape of interest in geometric
active contours using the distance function to represent train-
ing distances. Another objective function for segmentation
was proposed in Ref. 90 by applying the PCA to a collec-
tion of signed distance representations of the training data.
Rousson and Paragios91 applied a shape constraint to the
implicit representation using the level-set to formulate an
energy functional, where an initial segmentation result can
be corrected by the level-set shape prior model through PCA.
They also considered a stochastic framework in constructing
the shape model with two unknown variables: the shape
image and the local degrees of shape deformations.

In specific applications, 3-D heart modeling was explored
in Ref. 19 and the four-chamber heart modeling was pro-
posed in Refs. 1 and 92. Geometric constraint was also incor-
porated in the LV segmentation problem. The model-based
approach in Ref. 93 has gained a lot of attention as a solution
to the image segmentation problem with incomplete image
information.94,95

Several other model-fitting methods have been investi-
gated to date. The atlas-based segmentation was carried
out based on the registration, where multiple atlases were

registered to a target image by propagation of the atlas
image labels with spatially varying decision fusion weight
in CT scans.96 In addition, a deformable surface represented
by a simplex mesh in the 3-D space used the time constraints
in segmenting the SPECT cardiac image sequence in Ref. 2.
Modeling the four-chamber heart was performed for 3-D car-
diac CT segmentation,97 where the simplex meshes were
used to provide a stable computation of curvature-based
internal forces. Heart modeling was accomplished with a
statistical shape model76 and labeling is performed on mesh
points that correspond to special anatomical structures such
as control points that integrate mesh models.1 The whole
heart segmentation method, including four chambers, myo-
cardium, and great vessels in CT images, was proposed in
Ref. 98, where ASM and the generalized Hough transform
for automatic model initialization were exploited.

4 Applications to Specific Imaging Modalities
In this section, several modalities for cardiac examinations
are reviewed and techniques used for segmentation in each
modality are presented. We summarize roles and character-
istics of each modality with reference to the recent work,99

and describe the segmentation techniques used for each
modality.

4.1 Ultrasound Imaging
US imaging is the most widely used technique in cardiology
for evaluation of contractile cardiac function. It has several
advantages, including good temporal resolution and rela-
tively low cost. It can be used to assess tissue perfusion
by myocardial contrast echocardiography.100 Additionally,
it is well-suited for image-guided interventions due to its
recent advances, allowing visualization of instruments as
well as cardiac structures through the blood pool.101 How-
ever, US imaging suffers from low SNR (signal-to-noise
ratio) and speckle noise,102 making the LV segmentation
task challenging. Moreover, the acquisition is usually per-
formed in 2-D102 and therefore depends on the orientation,
leading to missing boundaries and low contrast between
regions of interest.103 US imaging of the heart involves 2-D,
2-Dþ t, 3-D, 3-Dþ t, and Doppler echocardiography,
each of which poses different challenges. In this review,
we focus primarily on the segmentation of the 3-D and
3-Dþ t data.

A recent advance in this field of cardiac imaging is three-
dimensional echocardiography (3-DE). This tool has been
used only for research purposes in the past, but due to recent
improvements in software algorithms and transducer tech-
nology, it is now used in clinical practice.104,105 2-D and
3-D echocardiography use different transducers. 3-DE is
well-suited for LV mass, volumes, and EF104,105 because
2-D imaging can potentially provide biased measurements
of EF.106

Numerous segmentation techniques have been proposed
for US imaging. 3-D AAM was proposed,79,107 where its
model was learned from the manual segmentation results
and the information of the shape and image appearance of
cardiac structures was included in a single model. The
level-set or the active contour segmentation methods were
also applied to the US segmentation.108–111 Level-set
based method with specialized processing was adopted to
extract highly curved volumes while ensuring smoothness

Fig. 5 Segmentation results obtained by applying the AAM technique
to an ultrasound image sequence over one heart beat period:83 (a) the
initial 1-phase AAMmodel positioned, (b) the match after 5 AMM itera-
tions, (c) the final match after 20 AAM iterations, and (d) the manual
contours for comparison. The first row shows phase images 1, the
second row shows phase images 2, and the third row shows
phase images 3 from 16 image phases. (Reproduced from J.
Bosch et al. with permission of ©2002 IEEE.)
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of signals.108 Additionally, an algorithm based on deep
neural networks and optimization was employed112 and a
discriminative classifier, random forest, was used to deline-
ate myocardium.113 For an in-depth review on the segmenta-
tion of US images, we refer the reader to Ref. 102.

4.2 Nuclear Imaging (SPECT and PET)
Nuclear imaging has been an accepted clinical gold standard
for the quantification of relative myocardial perfusion at
stress and rest.114 It is also the mainstream imaging technique
to estimate myocardial hypo-perfusion due to coronary ste-
nosis. Gated myocardial perfusion SPECT115 is also widely
used for the quantitative assessment of the LV function. LV
regional wall motion and thickening by SPECT play an inte-
gral part to assess coronary artery disease and determine the
extent and severity of functional abnormalities.116 Accurate
segmentation of LVand quantification of the volume offer an
objective means to determine the risk stratification and ther-
apeutic strategy.117 However, delineation of the endocardial
surface with nuclear imaging is challenging due to relatively
low image resolution, extracardiac background activities,
partial volume effect, count statistics, and reconstruction
parameters.118

A few techniques have been developed for nuclear ima-
ging segmentation. Germano et al.119 proposed LV segmen-
tation method for SPECT, which is widely used in nuclear
cardiology practice as illustrated in Fig. 6. In addition, wall
motion and thickening were further investigated with the
same technique.116 In brief, an asymmetric Gaussian was
exploited to fit to each profile in each interval of a gated
MPS volume, where a maximal count myocardial surface
was determined. Other well-established methods for the
quantitative analysis of nuclear myocardial perfusion imag-
ing exist such as the Corridor4DM,120 the Emory Cardiac
Toolbox,121 the University of Virginia quantification

program,122 and the Yale quantification software.123 These
automated software tools allow highly automatic definition
of the LV contours and measure perfusion defect size, EF,
EDV, and LV mass.

In other developments, the level-set technique was
employed for the segmentation of cardiac gated SPECT
images124 and a geometric active contour-based SPECT seg-
mentation technique was proposed.125 Slomka et al.126 and
Declerck et al.127 proposed a template-based segmentation
method using the registration-based approach. Additionally,
the 4-D (3-Dþ t) shape prior was adopted in Ref. 128 using
implicit shape representation of the left myocardium in
SPECT image segmentation. This study extended the shape
modeling to the spatiotemporal domain by treating time
as the fourth dimension and applied the 4-D PCA. Faber
et al.129 employed an explicit edge detection method to
estimate endocardial and epicardial boundaries using the
structural information in gated SPECT perfusion images.
The 3-D ASM segmentation algorithm was adopted in
Refs. 118 and 130 for cardiac perfusion gated SPECT studies
and the construction of geometrical shape and appearance
models. Reutter et al.131 used a 3-D edge detection technique
for the segmentation of respiratory-gated PET transmission
images and Markov random fields were adopted for 3-D
segmentation of cardiac PET images.132

4.2.1 Gated SPECT analysis

In gated cardiac imaging, a short and cyclic image sequence
is generated, representing a single heartbeat that summarizes
data acquired over cardiac cycles.133,134 Gated SPECT
images can provide global and regional parameters of LV
function as described in Sec. 2. Once LV is segmen-
ted,119,129,135 the endocardial and epicardial boundaries are
utilized for the quantification of global and regional param-
eters. The LV cavity volume is determined by the volume

Fig. 6 The gated SPECT segmentation in Ref. 119, where the first row shows original myocardial perfusion SPECT (MPS) and the second row
shows the segmented image of the first row.
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of each voxel and number of voxels bound by the LV
endocardium and valve plane.116,119,136 Measurements of
EF including ES and ED from gated SPECT are validated
in many studies, demonstrating good accuracy.8,119,136,137

However, the relatively low resolution of nuclear cardiac
images can lead to an underestimation of the LV cavity
size, especially when patients have small ventricles, there-
fore resulting in overestimation of the EF.138–140 Quantitative
measurement of wall motion is obtained by displacements
of the endocardium from ED to ES116,141,142 and WT quan-
tification is measured by assessing the apparent intensity of
the myocardium from ED to ES resulting from the partial
volume effect.18,129,143–145 Despite the low resolution of
gated MPS, partial volume effect is actually exploited to ana-
lyze motion and thickening, since changes in the image
intensity are related to the thickening of the myocardium.116

4.3 Computer Tomography (CT)
In cardiac CT, there are two imaging procedures: (1) coron-
ary calcium scoring with noncontrast CT and (2) noninvasive
imaging of coronary arteries with contrast-enhanced CT.
Typically, noncontrast CT imaging exploits the natural den-
sity of tissues. As a result, various densities using different
attenuation values such as air, calcium, fat, and soft tissues
can be easily distinguished.146 Noncontrast CT imaging is a
low-radiation exposure method within a single breath hold,
determining the presence of coronary artery calcium.146 In
comparison, contrast-enhanced CT is used for imaging of
coronary arteries with contrast material such as a bolus or
continuous infusion of a high concentration of iodinated con-
trast material.147 Furthermore, coronary CT angiography has
been shown to be highly effective in detecting coronary ste-
nosis.148 Especially in the recent rapid advances in CT tech-
nology, CT can provide detailed anatomical information of
chambers, vessels, coronary arteries, and coronary calcium
scoring. Coronary CT angiography can visualize not only the
vessel lumen but also the vessel wall, allowing noninvasive
assessment of the presence and the size of the noncalcified
coronary plaque.149 Additionally, CT imaging provides func-
tional as well as anatomical information, which can be used
for quantitative assessment for systolic WTand regional wall
motion.150,151

Various segmentation techniques have been proposed for
cardiac CT applications. Funka-Lea et al.152 proposed a
method to segment the entire heart using graph-cuts. Seg-
menting the entire heart was performed for clearer visualiza-
tion of coronary vessels on the surface of the heart. They
attempted to set up an initialization process to find seed
regions automatically using a blowing balloon that measures
the maximum heart volume and added an extra constraint
with a blob energy term to the original graph-cuts formula-
tion. Extracting the myocardium in 4-D cardiac MR and CT
images was proposed in Ref. 67 using the graph-cuts as well
as EM-based segmentation. Zheng et al.1 presented a seg-
mentation method based on the marginal space learning
by searching for the optimal smooth surface. Model-based
techniques were also adopted for cardiac CT image segmen-
tation using ASM with PCA.153 Methods for region grow-
ing154,155 and thresholding156,157 were also employed. An
entirely different topic is the segmentation of coronary
arteries from the CTangiography data, which is well covered
by other reviews.158,159

4.4 MRI
Cardiac MRI allows comprehensive cardiac assessment by
several types of acquisitions that can be performed during
one scanning session.9 It provides high-resolution visuali-
zation of cardiac chamber volumes, functions, and myo-
cardial mass.160 Cardiac MRI has been established as the
research gold standard for these measurements, with more
and more clinical impact. Moreover, recently developed
delayed enhancement imaging with gadolinium contrast
has emerged as a highly sensitive and specific method
for detecting myocardial necrosis. This allows improved
evaluation of the myocardial infarction.161,162 Perfusion
MRI imaging can also be performed for the diagnosis of
ischemic heart disease. However, the perfusion MR imag-
ing depends on a first-pass technique, which limits the
conspicuity of perfusion defects.163,164 The advantages of
MRI include exquisite soft-tissue contrast, high spatial
resolution, low SNR, ability to characterize tissue with a
variety of pulse sequences, and no ionizing radiation. Com-
pared to PET or SPECT, the dependence of MR signal on
regional hypoperfusion is minimal and does not prevent
segmentation tasks. Some of the disadvantages are that
cardiac MRI typically employs one breath-hold per slice
with 5 to 15 slices per patient study, therefore necessitating
multiple breath-holds for each patient dataset. Additionally,
the images are of high-resolution in-plane but the resolution
between slices is low (typically 8 to 10 mm). Also, multiple
breath-hold acquisitions can cause errors in spatial align-
ment and result in artifacts of the 3-D heart image. These
misalignments can be corrected by software registration
techniques.165 Recently, full volume 3-D MRI acquisitions
have been proposed.9

Cardiac MR tagging is an important reference technique
to measure myocardial function, which allows quantification
of local myocardial strain and strain rate.166,167 Tagged MR
produces signals that can be used to track motion. Several
techniques have been developed, including magnetization,
saturation, spatial modulation of magnetization (SPAMM),
delay alternating with nutation for tailored excitation
(DANTE), and complementary SPAMM (CSPAMM). These
techniques produce a visible pattern of magnetization satu-
ration on the magnitude reconstructed image without any
post-processing. However, quantifying myocardial motion
requires exhaustive post-processing. In contrast, more
advanced techniques such as Harmonic phase (HARP), dis-
placement encoding with simulated echoes (DENSE), and
strain encoding (SENC)167,168 compute motion directly
from the signal and do not directly show tagging pattern.
Simple post-processing is required for myocardial motion
information. For more details, we refer readers to the recent
review of cardiac tagged MRI.167

Numerous image segmentation techniques have been
applied to MRI and are summarized below. Petitjean
et al.169 presented a review of segmentation methods in
short axis MR images. Paragios35 used the level-set techni-
que using a geometric flow to segment endo- and epicardium
of the LV. Two evolving contours were employed for the
endo- and epicardium and the method combined the visual
information with anatomical constraints to segment both
regions of interest simultaneously. Paragios et al.35,170,171

applied the shape prior knowledge with the level-set
representation to achieve robust and accurate results.
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Moreover, several constraints and prior knowledge have
been incorporated in the level-set framework for efficiently
segmenting regions of interest. For example, the velocity-
constrained front propagation method was proposed by
using the magnitude and direction of the phase contrast
velocity as the constraints.172 Woo et al.173 proposed statis-
tical distance between the shape of endo- and epicardium as
a shape constraint using signed distance functions. Tsai
et al.174 proposed a shape-based approach to curve evolution
and Ciofolo et al.175 proposed a myocardium segmentation
scheme for late-enhancement cardiac MR images by incor-
porating the shape prior with contour evolution. Zhu et al.176

applied a dynamic statistical shape model with the Bayesian
method.

Segmentation techniques using thresholding,177,178 region
growing,179,180 and boundary detection181,182 were applied to
MRI data. For instance, a local assessment of boundary
detection method was proposed to improve the capture
range and accuracy.183 Segmentation algorithm using opti-
mal binary thresholding method and region growing was
presented to delineate 3-Dþ t cine MR images.184 In addi-
tion, learning frameworks were used to segment 2-D tagged
cardiac MR images.185,186

Table 1 Cardiac image segmentation results with validation.

References Year Modality ROI Dim Data size Validation results

Bosch et al.83 2002 US LV 2Dþ T 129 The averaged border positioning error was
4.27� 2.52 mm

Yue et al.110 2008 US WH 2D 21 The Hausdorff distance and mean absolute distance
were measured

Angelini et al.108 2005 US LV, RV 3Dþ T 10 The error intervals were 1.31� 6.27% for RV EF
and 2.93� 6.13% for LV EF

Mitchell et al.79 2002 MRUS LV 3D 18 The mean signed endocardial surface positioning
error was 0.46� 1.33 mm and the mean signed
epicardial surface positioning error was
0.29� 1.16 mm.

Tsai et al.174 2003 MR LV 2D 100 images
from 1 patient

N/A

Uzumcu et al.201 2003 MR LVRV 2D 150 Median point-to-point error (pixels) was 1.86

Woo et al.173 2009 MR LV 2D3D 10 The mean values of EDV, ESV and LVEF were
calculated using manual segmentation and
proposed algorithm. EDV was 139� 41, ESV was
68� 49 and LVEF was 55� 19

Funka-Lea et al.152 2006 CT WH 3D 70 2∕70 failed. The averaged error between the
manually and automatically generated surface was
5.5 mm

Isgum et al.96 2009 CT WH 3D 29 The Tanimoto coefficient between the reference and
the automated segmentation was computed and the
accuracy was 70.15� 17.38%

van Assen et al.202 2008 CT LV 3D 9 Average point-to-point distances measured per
patient between manual drawn ground truth and the
proposed algorithm’s contour were 1.85 mm
(endocardium) and 1.60 mm (epicardium).

Zheng et al.92 2007 CT FourChambers 3D 137 The point-to-mesh distance based on four-fold
cross-validation with an averaged error rate of 2.3%

Kohlberger et al.128 2006 SPECT LV 3Dþ T 15 The averaged error rate was 27% compared to
hand-segmented ground truth using relative
symmetric voxel error calculation.

Yang et al.125 2006 SPECT LV 2D 20 The accuracy was 87.3� 6.7% based on a region
overlap measure against hand-segmented ground
truth.

Debreuve et al.124 2001 SPECT LV 3Dþ T 8 The number of voxels of the segmented
myocardium was computed

Kang et al.: Heart chambers and whole heart segmentation techniques: review

Journal of Electronic Imaging 010901-11 Jan–Mar 2012/Vol. 21(1)



4.5 Parameter Correlation between Imaging
Modalities

Several attempts have been made to compare and correlate
the quantitative parameters obtained by different imaging
modalities and different image segmentation approaches.
Various reports in the literature indicate that cardiac MRI
can provide accurate estimates of EF, LV volumes.187–191

and wall motion/thickening analysis.187–189 In addition,
gated SPECT has been extensively validated against various
two-dimensional imaging techniques, such as echocardio-
graphy,192 but there are only a limited number of studies
comparing gated SPECT with other three-dimensional tech-
niques such as cardiac MRI, which is considered the refer-
ence standard for assessing LV volumes.193–196 Visual
interpretations of wall motion by observers on the two mod-
alities have been compared along with LV volumes193–196 but
quantitative comparison for assessment of regional wall
motion/thickening has not been reported previously. Using
echocardiographic sequences, values of LV volumes, EF,
and regional endocardial shortening also correlate with
MR. Cardiac MRI was used as a reference method for com-
parison with unenhanced and contrast-enhanced echocardio-
graphy.197,198 LV mass obtained by contrast enhanced color
Doppler echocardiography has shown excellent agreement
with those from MRI.199 The left and right ventricular EDV,
ESV, stroke volume, EF, and myocardial mass obtained
by dual-source CT also correlated well with those from
MRI.200

5 Validation (Evaluation) of Segmentation Results
Automatic cardiac image segmentation results can be eval-
uated alone or by comparing it with a reference, possibly a
different imaging modality, including the manual segmenta-
tion result or a ground truth. For stand-alone evaluation, one
can exploit statistical properties of heart anatomy and/or
observe the segmented images. For reference-based evalua-
tion, both quantitative and qualitative comparisons can be
performed. Quantitative comparison can be done by measur-
ing various metrics such as the fractional energy difference,
the Hausdorff distance, the average perpendicular distance,
the dice metric, and the mean absolute distance110 between
the segmented structures. The average perpendicular dis-
tance measures the distance from the automatically segmen-
ted contour to the corresponding manually drawn contour by
experts, and averages of all contour points. For LV segmen-
tation, the ED and the ES phases of all slices have been mea-
sured. The EF and the LV mass are also important clinical
parameters to evaluate. Table 1 summarizes previous studies
that dealt with cardiac segmentation validation with respect
to different imaging modalities, imaging targets, the number
of data sets, evaluation results, and comments.

6 Conclusions
Several advanced segmentation techniques have been pro-
posed in the image processing and computer vision commu-
nities for the cardiac image analysis. In this review, we have
categorized them into four major classes: 1) the boundary-
driven techniques, 2) the region-driven techniques, 3) the
graph-cuts techniques, and 4) the model-fitting techniques.
These techniques have been applied to segmentation of
cardiac images acquired by different imaging modalities,
providing high automation and accuracy in determining

clinically significant parameters. These computational tech-
niques aid clinicians in evaluation of the cardiac anatomy
and function, and ultimately lead to improvements in patient
care. However, cardiac image segmentation continues to
remain a challenge due to the complex anatomy of the
heart, limited spatial resolution, imaging characteristics, car-
diac and respiratory motion, and variable pathology and
anatomy. Therefore, improved segmentation techniques
with enhanced reliability, reduced computation time, super-
ior accuracy, and full automation will be needed for the
future.
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