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Abstract. Monte Carlo simulation is considered the most reliable method for modeling photon migration in
heterogeneous media. However, its widespread use is hindered by the high computational cost. The purpose of
this work is to report on our implementation of a simple MapReduce method for performing fault-tolerant Monte
Carlo computations in a massively-parallel cloud computing environment. We ported the MC321 Monte Carlo
package to Hadoop, an open-source MapReduce framework. In this implementation, Map tasks compute photon
histories in parallel while a Reduce task scores photon absorption. The distributed implementation was evaluated
on a commercial compute cloud. The simulation time was found to be linearly dependent on the number of
photons and inversely proportional to the number of nodes. For a cluster size of 240 nodes, the simulation of 100
billion photon histories took 22 min, a 1258 × speed-up compared to the single-threaded Monte Carlo program.
The overall computational throughput was 85,178 photon histories per node per second, with a latency of 100 s.
The distributed simulation produced the same output as the original implementation and was resilient to hardware
failure: the correctness of the simulation was unaffected by the shutdown of 50% of the nodes. C©2011 Society of
Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3656964]
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1 Introduction
Researchers have long relied on single-threaded programming
for solving computational problems. However, in many appli-
cations, the growth of scientific data has outpaced the perfor-
mance of single-core processors. Furthermore, multicore pro-
cessors and many-core graphics processing units (GPUs) are
now the industry standard for high-performance computing. As
a result, scientific computing is inexorably shifting to parallel
architectures.

In biomedical applications, the need for high-performance
computing is growing as technology evolves toward more ac-
curate imaging and treatment delivery methods. Monte Carlo
simulation is the gold standard for modeling complex physi-
cal systems, such as photon migration in biological tissue.1–3

Yet the use of Monte Carlo methods is still hampered by the
high computational cost. For instance, it is still not practical
to conduct Monte Carlo simulations for planning of photody-
namic therapy,4 especially when using inhomogeneous tissue
models.5, 6

Several distributed approaches have been proposed and im-
plemented to accelerate Monte Carlo simulation of photon trans-
port. Monte Carlo simulation belongs to a class of problems
referred to as “embarrassingly parallel”, because little effort is
required to split the problem into parallel tasks. Several high-
energy Monte Carlo packages have been ported onto computer
clusters using tools such as MPI (Refs. 7, 8, and 9) and shell
scripting.10 Light transport in turbid medium has also been ac-
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celerated using computer clusters,11 multiprocessor systems,12

and field-programmable gate arrays.13

In recent years, the graphics processing unit has be-
come a popular platform for running distributed biomedical
computations.14 For simple homogeneous media, GPU com-
puting can dramatically accelerate Monte Carlo simulation of
photon migration.15 Very high acceleration can also be achieved
for voxelized and multilayer geometries.16, 17 Acceleration is
more modest for complex mesh-based geometries18 because
the distributed calculation of the intersection of a set of rays
with a triangular mesh is challenging on the GPU. Monte Carlo
simulation for high-energy physics has also been investigated
on the GPU.19, 20 Because high-energy particles can undergo
a wide range of physical interactions with matter, these im-
plementations use complex optimization strategies for efficient
processing.21

While parallel processing techniques can accelerate Monte
Carlo simulations, practical considerations can be an obstacle
to porting existing single-threaded codes onto parallel architec-
tures. To utilize parallel resources efficiently, programmers must
be skilled in parallel programming and spend substantial effort
optimizing the parallel portion of their code. Parallel code is
also harder to debug and maintain. Last, large computer clus-
ters are not always available at a medical institution for running
massively parallel applications. All these practical issues are
important drawbacks to the development and use of distributed
algorithms.

Recently, Internet-scale computation has emerged as a major
driver for new parallel processing technologies. Internet com-
panies routinely process very large datasets such as log files,
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user information, pictures, or videos. Most of these processing
tasks are quite simple; however, the size of the input data is
large and the computation has to be distributed to hundreds of
nodes for practical processing times. Usually, porting these sim-
ple tasks onto parallel architectures requires far more effort than
required for a single-thread implementation. To address this is-
sue, MapReduce was developed at Google as a new framework
to facilitate the development of parallel algorithms.22

MapReduce can hide the complexity of parallelization, data
distribution, fault-tolerance, and load balancing to the developer,
which can focus on developing the actual algorithm. In this pro-
gramming model, the developer specifies simple tasks which are
applied in a distributed fashion to large datasets. MapReduce is
also well integrated with existing commercial cloud comput-
ing infrastructure. Cloud computing refers to the outsourcing of
one’s compute resources to third-party companies. Cloud com-
puting providers offer services such as web-based software, data
warehousing, and scalable clusters of virtual nodes. In a cloud
computing environment, hardware resources are often virtual:
computer nodes can be allocated on demand with custom spec-
ifications, and can migrate from one physical host to another. In
a cluster, the number of nodes can also be scaled in real-time,
according to demand for computation.

MapReduce and cloud computing technologies are al-
ready widely used in applications such as web crawling
and analytics,23, 24 data mining,25 machine learning,26 and
bioinformatics.27–30 In this paper, we investigate the use of
MapReduce for biomedical Monte Carlo simulation. As a proof-
of-concept, we ported an existing photon migration Monte Carlo
code to Hadoop, an open-source MapReduce framework, and
characterized the performance of this new implementation in a
cloud computing environment.

2 MapReduce
MapReduce is a programming model for processing large data
sets.22 In this framework, the user specifies two functions called
Map and Reduce, respectively. Although neither function is ex-
plicitly parallel, many instances of these functions are executed
concurrently by the framework. Input data, stored on a dis-
tributed storage system, are split by MapReduce into chunks

and distributed to parallel Map tasks for processing (Fig. 1).
No communication is possible between Map tasks; however, the
outputs of Map tasks can be combined by Reduce tasks.

Data communication between Map and Reduce tasks is han-
dled using key/value pairs (KVPs). In MapReduce, keys and
values can be stored in any format, provided that keys can be
compared to one another and sorted. While processing input
data, Map tasks emit a sequence of intermediary records format-
ted as KVPs (Fig. 1). Intermediary records that share a common
key are assigned to the same Reduce task. A partition function
determines how keys are assigned to Reduce tasks.

The role of the Reduce step is to combine intermediary
records into the final output. Each Reduce task sequentially
reads records associated with a given key. The user specifies
how these records are combined. For example, the user can sum
the values associated with a common key. The output of the
Reduce function is automatically written in KVP format to a
distributed storage system, from which it can be retrieved.

Conceptually, Map and Reduce functions can be described
as

map: v1 → list (k2, v2)

reduce: (k2, list (v2)) → list (v3). (1)

The number of Map and Reduce tasks is set by the user. In gen-
eral, the number of tasks should be larger than the number of
nodes for fine processing granularity. The user can also spec-
ify how input data are split and how intermediary records are
partitioned.

A feature of MapReduce is its tolerance for hardware fail-
ures. In a large cluster, the probability that one or more nodes
fail is non-negligible. When a node fails, MapReduce resched-
ules the compromised tasks onto other nodes in the cluster. A
related issue is the heterogeneous performance of worker nodes.
For instance, a node in the cluster might be crippled by a defec-
tive hardware component and run slowly. Such straggling nodes
can substantially reduce the performance of the entire cluster.
MapReduce uses a technique called speculative execution to
overcome this type of situation. Worker nodes that finish their
workload early can attempt to execute clones of tasks in progress
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Fig. 1 An overview of the MapReduce framework. A master node assigns Map and Reduce tasks to worker nodes. Input files are split into chunks,
that are processed by independent Map tasks, producing a stream of intermediary key/value records. These records are selectively read by Reduce
tasks according to their key, and combined finally into multiple outputs.
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Fig. 2 A depiction of Hadoop Streaming, a utility that allows users to
specify external applications as Map and Reduce functions.

elsewhere in the cluster. A task is considered completed when
either its original or clone completes.

The original MapReduce software framework developed by
Google is not publicly available but several open-source alter-
natives exist. Hadoop,31 maintained by the Apache Software
Foundation, is used by Internet companies for large-scale data
processing, financial simulations and bioinformatics calcula-
tions. Hadoop set a record in 2009 by sorting 1 Petabyte of data
in 16.3 h on 3658 nodes.32

The Hadoop project includes the Hadoop distributed file sys-
tem (HDFS), designed for storing extremely large data files
(Petabytes and up) on a distributed network of computers, and
Hadoop MapReduce, the parallel computation engine. Although
Hadoop is written in Java, developers can write jobs in any other
programming language using a utility called Hadoop Streaming.
Hadoop Streaming implements Map and Reduce functions as
interfaces to external user-specified applications (Fig. 2). Exter-
nal Map and Reduce applications communicate with Hadoop
Streaming through standard Unix streams. They read input
KVPs via standard input (stdin) and write back their output
via standard output (stdout). KVPs can be formatted as Text or
TypedBytes, which are sequences of bytes in which the first byte
is a type code.

3 Methods
3.1 Monte Carlo
MC321, a steady-state optical Monte Carlo package for simu-
lating photon migration in homogeneous turbid media,2 was im-
plemented using Hadoop. In this package, photons are launched
in packets with a virtual weight initially set to 1. As the photon
packet propagates in the medium, it can scatter or be absorbed.
The step size is sampled randomly based on the probability den-
sity function of free path. Once the photon packet has reached
an absorption site, a fraction of its weight is absorbed and scored
into a 256×256 detection grid. Next, the photon packet direc-
tion is updated by sampling the deflection angle in a manner
consistent with anisotropic light scattering. Once the weight of
a photon packet drops below 0.01, a Russian roulette test with
a 10% survival probability is performed. If the packet survives,
its weight is renormalized and the simulation continues. If the
roulette test fails, the packet is terminated and a new photon
packet may be initiated. No index mismatch or boundary con-
ditions are considered in this simple simulation. Photons that
reach the phantom’s boundary escape the medium and are auto-
matically terminated.

The MC321 package is a simplified Monte Carlo method
that has been utilized to study treatment planning for photody-
namic therapy2 and x-ray luminescence imaging.33 MC321 can-
not model heterogeneous media with spatially-varying optical
properties, or photon propagation through material boundaries.
However, MC321 shares common features with more accurate
packages, such as MCML (Ref. 3) or tMCimg.5

3.2 MapReduce Implementation
We propose two novel distributed implementations of MC321
using MapReduce. The first method, termed Monte Carlo
event-based processing (MC-EP), splits the production and
aggregation of photon histories into Map and Reduce steps,
respectively. In this scheme, Map tasks run parallel Monte

Fig. 3 An overview of the MC-EP implementation. (Map) For each random seed loaded from stdin, N photon packets are simulated. Individual
photon events are written to stdout. (Reduce) The stream of photon events, now sorted by key, are aggregated such that the total photon weight
absorbed at every location is computed and written out to stdout.
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Carlo simulations, emitting intermediary KVPs every time a
photon packet deposits a fraction of its weight into the medium
(Fig. 3, top panel). In these intermediary records, the key is an
integer index to the nearest two dimensional (2D) detection bin,
and the value a floating-point number representing the photon
weight absorbed in that bin. These intermediary records are
then aggregated by parallel Reduce tasks in the following way:
records that share the same key are sequentially read while
the corresponding values are accumulated in a local variable.
Once all the records for a given key have been processed, the
Reduce tasks outputs the cumulated photon weight absorbed in
the corresponding detection bin (Fig. 3, bottom panel).

The MC-EP approach is highly flexible because it separates
the production and the aggregation of photon histories. In gen-
eral, little modification is required to implement the MC-EP
scheme using an existing single-threaded Monte Carlo code.
Streaming photon events to stdout using the KVP format re-
quires minimal code change. (Typically, only a few fwrite state-
ments need to be added to the code.) However, a drawback of the
MC-EP approach is that large amounts of intermediary data are
produced. To decrease the amount of data exchanged between
Map and Reduce steps, intermediary KVPs can be partially ag-
gregated within the Map stage prior to being transferred to the
Reduce stage.

In this scheme, termed Monte Carlo histogram-based pro-
cessing (MC-HP), each Map task outputs a partial scoring array
corresponding to the photon histories it has computed. In turn,
Reduce tasks accumulate these partial outputs into a complete
scoring array. In the MC-HP scheme, intermediary KVPs consist
of a unique key (arbitrarily set to 1) and an array of floating-point
values representing partial 2D scoring arrays. Most Monte Carlo
packages (including MC321) score photon events using a local
array, which they write to a disk once the simulation completes.
To implement the MC-HP scheme, the developer only needs to
write the scoring array to stdout instead of a local file.

For both implementations, Mapper and Reducer are written
as standalone C applications. To ensure that Monte Carlo simu-
lations performed in parallel are uncorrelated, a text file contain-
ing 10,000 distinct seeds is used as the input of the MapReduce
job. The large number of seeds allows Hadoop to execute up to
10,000 parallel Map tasks for fine processing granularity. We
also ensure that the Map function, given the same input, always
produces the same output. Random number generators (RNGs)
that use a system-wide state are problematic with MapReduce
because re-execution and speculative execution assume deter-
ministic functions. All communications through UNIX streams
use the TypedBytes data format.

The MapReduce implementation of the MC321 Monte
Carlo package described in this paper is available for research
purpose. The codes can be downloaded from http://xinglab.
stanford.edu/research/downloads.html.

3.3 Computing Environment
Two different Hadoop clusters were used. To develop and de-
bug MapReduce jobs, we set up a pseudo-distributed cluster
by installing Hadoop 0.21 on a quad-core computer. Input and
output data were stored on a local installation of HDFS. To run
and profile large jobs, we allocated a remote Hadoop cluster
on Amazon’s Elastic Compute Cloud (EC2), using the Elas-

tic MapReduce (EMR) service. EMR is an implementation of
Hadoop 0.20 tightly integrated with other Amazon web services,
such as the Simple Storage Service (S3).

Map and Reduce applications were compiled remotely on
an EC2 node using GCC version 4.3.2, and uploaded onto S3
together with the input random seeds. EMR jobs were submitted
from a local computer using a freely-available command-line
tool.

3.4 System Evaluation
For benchmarking purposes, we simulated the diffusion of a
633 nm laser beam within a turbid 5-cm radius cylinder filled
with a 5% milk/95% water mixture.34 The phantom properties
were set as follows: the absorption and scatter coefficients were
μa = 0.0025 cm−1 and μs = 7.8 cm−1, respectively; the index
of refraction was n = 1.3; and the anisotropy coefficient was
g = 0.9. The photons were initialized at a single point on the
surface of the phantom and directed toward its center. For sim-
plicity, only the x and y coordinates of each absorbed photon
were scored.

In a first experiment, we compared the original MC321 code
against the MC-EP and MC-HP implementations. The bench-
mark consisted in simulating 100 million photon packets. The
original Monte Carlo code was run single-threaded on an Intel
Core2 Q9650 CPU with 4 GB of memory. The MapReduce im-
plementations were run on EC2 using 20 high-memory nodes
(code-named m2.xlarge). The m2.xlarge node configuration is
specially adapted for tasks with large memory requirements,
which we found was necessary for the MC-EP implementa-
tion. A single m2.xlarge node comes with 17.1 GB of memory,
two 64-bit virtual cores with 3.25 EC2 compute units each, and
420 GB of local storage. The output data were downloaded back
to a local computer and analyzed with MATLAB.

In a second experiment, the total simulation time was
recorded for a variable number of photon packets, ranging from
10 million to 100 billion. At this point, we focused our inves-
tigation on the more efficient MC-HP implementation. Twenty
high-CPU nodes (codename c1.medium) were used in these
tests. These nodes have 1.7 GB of memory, two 32-bit virtual
cores with 2.5 EC2 compute units each, and 350 GB of local
storage. Each c1.medium node is configured for running four
MapReduce tasks simultaneously.

In a third experiment, 100 billion photon packets were sim-
ulated using MC-HP on a variable number of nodes, ranging
from 1 to 240. The c1.medium node configuration was used.
Five thousand Map tasks and one Reduce task were run, provid-
ing very fine task granularity and good load balancing. The total
run time was recorded and the output of the simulations com-
pared. Because we were not authorized to allocate more than
240 EC2 nodes, we additionally ran the same simulation on
the high-CPU extra-large node configuration (c1.xlarge). These
nodes have 8 virtual cores with 2.5 EC2 compute unit each,
7 Gb of memory, and 1.7 Tb of local storage. A cluster of 240
c1.xlarge nodes is roughly equivalent to 960 c1.medium nodes.

In a fourth experiment, a 4-node Hadoop cluster was allo-
cated on EC2 and profiled using built-in tools while simulating
300 million photons. The number of Map and Reduce tasks was
set to 100 and 1, respectively. Disk I/O, network I/O, and CPU
utilization were recorded every minute.

Journal of Biomedical Optics December 2011 � Vol. 16(12)125003-4

http://xinglab.stanford.edu/research/downloads.html
http://xinglab.stanford.edu/research/downloads.html


Pratx and Xing: Monte Carlo simulation of photon migration in a cloud...

Fig. 4 MapReduce execution timeline for the MC-EP and MC-HP implementations, showing the number of active tasks at each time point. The
MC-EP timeline spans 18 min 09 s, versus 1 min 54 s for the MC-HP timeline. Waste denotes speculative execution.

In a last experiment, 100 million photon packets were simu-
lated with MC-HP on 20 nodes of type c1.medium. After 3 min,
a set number of worker nodes were terminated to mimic node
failure and test Hadoop’s fault tolerance.

4 Results
The simulation time for 100 million photon packets is re-
ported for the original and distributed implementations (Table 1).
For MapReduce, processing time is defined as the duration of
the Hadoop job, not including cluster initialization. For both
MapReduce jobs, a timeline was generated from Hadoop log
files using Karmasphere Studio (Fig. 4). Overall, MC-EP is
slower than MC-HP because MC-EP transfers many intermedi-
ary records between Map and Reduce tasks. In MC-EP, shuffle,
merge, and reduce tasks represent a significant portion of all
tasks (Fig. 4, top). In contrast, MC-HP runs a single reduce task
(Fig. 4, bottom).

The output of the MC-HP simulation is compared for a vari-
able number of simulated photon packets, ranging from 10 mil-
lion to 100 billion [Figs. 5(a)–5(e)]. The output of the MC-HP
simulation is virtually identical to that of the original MC321
package. For 10 million photon packets, the relative root-mean-
square error between the two photon absorption distributions is
lower than 4.1 × 10− 7 [Fig. 5(f)]. The discrepancy between the
two outputs is due to round-off errors during the conversion of
the Reduce output to 10 digit ASCII in the final file. The sim-
ulation time also increases linearly with the number of photons
packets [Fig. 6(a)]. Note that the curvature of the linear fit is due
to the logarithmic scale on both axes.

Table 1 Simulation time comparison.

No. Nodes No. Maps No. Red. Node Type Sim. Time

MC321 1 N/A N/A Q9650 28 min 39 s

MC-EP 20 200 200 m2.xlarge 18 min 09 s

MC-HP 20 200 1 m2.xlarge 1 min 54 s

For 100 billion photon packets, the simulation time scaled
inversely with the number of nodes [Fig. 6(b)]. On a single dual-
core EC2 node, simulating 100 billion photons took 11.2 days,
a 1.8 × speed-up compared with the single-threaded MC321
implementation. The same simulation took only 22 min on
240 c1.xlarge nodes, a 1258 × speed-up. Nodes based on the
c1.xlarge (8 cores) configuration ran the MC-HP simulation 3.3
times faster than c1.medium nodes (2 cores).

To better understand the use of resources, a 4-node Hadoop
cluster was profiled while simulating 300 million photons
(Fig. 7). The total runtime for this experiment was 20 min. It
can be observed that the execution of the simulation was clearly
compute-bound because the CPU utilization was maximized on
all three slave nodes. Only the CPU capacity of the master node
was not fully utilized. The pattern of network I/O was different
for nodes running Map tasks only and nodes running both Map
and Reduce tasks. In MC-HP, Map tasks are data producers; they
input little data (the random seeds) but output large amounts of

10M 100M 1B

10B 100B Error

(a) (b) (c)

(d) (e) (f)

Fig. 5 (a)–(e) Output of the MC-HP simulation for a variable number
of photon histories ranging from 10 million to 100 billion, shown on a
base-10 logarithmic scale. (f) Error between the original Monte Carlo
package and the MapReduce implementation, shown for 10 million
photon histories on a base-10 logarithmic scale.
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(a)

(b)

Fig. 6 (a) MC-HP simulation time for a varying number of photon
histories. Dashed line: least-square linear regression (r2 = 0.9998). The
curvature of the linear fit is due to the logarithmic scale. (b) MC-HP
simulation time for a varying number of CPU cores. Dashed line: ideal
inverse scaling of the single-node simulation time (r2 = 0.98).

data (the scoring arrays). In contrast, Reduce tasks are data con-
sumers: they continuously receive data from Map tasks, which
they only write to HDFS at the end of the simulation.

Hadoop’s fault tolerance was also evaluated by shutting down
1 and 10 worker nodes, respectively, during the simulation of
100 million photons on 20 nodes. The termination of these nodes
did not prevent Hadoop from successfully completing its job,
provided that the master node was kept alive. Upon node failure,
EMR allocated new nodes dynamically and relaunched failed
Map and Reduce tasks. The output of the Hadoop simulation
with some nodes terminated was identical to that obtained by
running the simulation with no failure. The failure of 1 and
10 nodes lengthened the total simulation by 15 and 18 min,
respectively.

5 Discussion
While MapReduce is often used to crunch large datasets such
as website logs, we demonstrated that it is also well suited for

Fig. 7 Resource profile showing I/O and computing during simulation
of 300 million photons on a 4-node Hadoop cluster.

computationally-demanding Monte Carlo simulations. MapRe-
duce’s architecture is largely decentralized for efficient data pro-
cessing on large clusters. Even with 240 nodes, the performance
of the MC-HP implementation scales linearly with the number
of CPU cores [Fig. 6(b)], showing few signs of diminishing re-
turns. On average, the simulation times were within 12% of the
ideal inverse scaling [Fig. 6(b), dashed line]. This result suggests
that, if needed, the MC-HP implementation could run on many
more nodes without suffering from interconnect latencies and
limited network throughput.

The MC-HP simulation also scaled linearly with the num-
ber of photon packets simulated. When the number of photons
was incremented from 10 million to 100 billion, the simulation
time followed a linear trend [Fig. 6(a), r2 = 0.9998]. Each in-
cremental one million photons can be simulated on 20 nodes in
0.6 s. Furthermore, the computation overhead, which consists of
cluster initialization, task distribution, and data reduction, is on
the order of 100 s, which is negligible when billions of photon
packets are simulated [Fig. 6(a)].

By combining the information from the first and second ex-
periment, the performance of the MC-HP implementation can
be better characterized. The throughput and latency were found
to be 85,178 photons per node per second, and 100 s, respec-
tively. In a separate experiment (data not shown), latency was
found to be independent of the number of nodes.
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Hadoop also proved to be a highly reliable framework that
could withstand the accidental failure of 50% of the worker
nodes. Upon node failure, EMR allocates new nodes to replace
failed ones. Currently, the process of resizing a running Hadoop
cluster on EC2 is rather slow, requiring around 15 min, but a
substantial effort is under way to improve the efficiency of the
process. There also exist simpler implementations of MapRe-
duce that do not resize the cluster, but rather redistribute failed
tasks to nodes not affected by the failure.

A drawback of cloud computing is that a virtual cluster must
be allocated on the cloud before running a job, a process that in-
volves deploying a large number of operating system images on
physical computers. Such initialization contributes to the over-
all execution time by increasing the latency, especially for very
large cluster configurations. The solution we adopted consisted
in keeping our virtual Hadoop cluster alive after the completion
of its first job, such that it would remain available for other jobs.

A word should also be said about the cost of performing
Monte Carlo simulation in a commercial cloud computing envi-
ronment. As of August 2011, the price of Amazon’s EC2 nodes
ranges from $0.025/h for micronodes to $2.28/h for quadru-
ple extra-large nodes. Most of the simulations presented in our
study were performed on high-CPU medium nodes, which are
priced at $0.19/h. Hence, large-scale simulations, such as those
with 1011 photon packet histories [Fig. 6(b)], can cost a few
hundred dollars to run. Cloud computing is ideal for research
institutions that do not have a sufficient demand to maintain
a full-size cluster on site. Furthermore, cloud resources have
very low downtime. The main alternatives to cloud computing
is the operation of a dedicated cluster, a solution currently used
by many research groups. This approach has a few advantages,
namely the absence of a virtualization layer and better control
over the hardware. However, energy, maintenance, and storage
costs can be significantly higher. Furthermore, the lack of elastic
scaling results in under- or overutilization of compute resources.

MapReduce is highly optimized for data-intensive process-
ing tasks, such as indexing web pages or mining large datasets.
It uses a loosely-coupled distributed memory system, which
does not allow parallel tasks to communicate with one another
directly. By its design, MapReduce is suboptimal for compute-
bound tasks or for tasks that require frequent internode data
exchange, such as, for instance, iterative image reconstruction.
In MapReduce, internode communication can be achieved by
reducing the Map outputs with Reduce tasks, and splitting these
data again using a new set of Map tasks. For tasks with a large
amount of internode communication, this mechanism may be
less efficient than a shared memory approach. For instance,
GPUs provide on-chip memory shared by threads in a same
block, and global memory shared by all threads. As a result,
GPU threads can exchange data efficiently. Many scientific com-
putation strategies have used the GPU’s fast shared memory to
achieve impressive performance.33 Furthermore, GPU can ac-
cess global memory with nearly 5-fold higher bandwith than
state-of-the-art CPUs: For instance, the memory bandwidth of
a Tesla C2050 GPU is 144 GB/s, versus 32 GB/s for an In-
tel Xeon X5650 CPU. However, the peak performance of the
two architectures should be compared with caution because the
GPU’s peak memory bandwidth is only achieved when mem-
ory transfers are fully coalesced (i.e., they occur in continous
128-bit chunks). For random memory accesses (such as scoring

during a Monte Carlo simulation), this is seldom the case and the
achieved bandwith can be lower than the peak theoretical value.
At this time, the use of a distributed memory system such as
MapReduce for scientific applications other than Monte Carlo
is still being investigated.35

The performance of the MC-HP implementation can be put
into perspective by comparing it against other published simu-
lations of photon migration in homogeneous media (Table 2).
These performance figures should be compared with caution
because of the diverse set of parameters used in these studies.
The speed of the simulation can be affected by a number of pa-
rameters, including the RNG, the optical properties, the size of
the scoring grid, and the roulette parameters. With this caveat in
mind, the cloud-based approach provides speed-up of the same
order of magnitude as its GPU-based counterparts (Table 2). A
GPU platform has several advantages for Monte Carlo simula-
tion, such as built-in hardware-accelerated arithmetic functions,
no thread-switching overhead, a compact form factor, and the
relatively low price of the hardware.14

However, one issue with GPU computing is that many threads
share access to the same memory. Hence, race conditions may
arise when two or more threads attempt to write to the same
grid element, since only one thread can write to a given mem-
ory location on a clock cycle. This situation occurs most fre-
quently in high fluence regions, such as near the light source,
and is less problematic in low-fluence regions.16 GPU atomic
operations can be used to serialize the memory writes when
needed, at the cost of slower memory access. For instance, the
MCX package is four times slower when such atomic opera-
tions are used (Table 2). A variant of MCX (mcx_cached) and
the GPU-MCML package use a different approach to mitigate
race condition issues: The high-fluence region of the scoring
array is cached in fast shared memory and accessed atomically,
while the low-fluence region is stored in global memory. Use of
fast shared memory reduces the penalty associated with atomic
operations since fewer threads access the grid at any time, and
shared memory has much lower latency than global memory.
In our MapReduce implementation, each task allocates its own
detection grid locally, which avoids data write hazards. Local
detection grids are combined using parallel Reduce tasks.

Additionally, MapReduce offers better scalability than
GPUs. To achieve higher photon throughput, multiple GPUs
must be employed and integrated into a cluster.17 The software
must be adapted to provide inter-GPU and intercomputer com-
munications, which adds another layer of complexity. In con-
trast, the number of nodes in a MapReduce cluster can be scaled
by modifying a single parameter. However, if used intensively,
a GPU cluster can be more economical over time than com-
puting capacity purchased on demand from a cloud computing
operator.

In the context of a Monte Carlo simulation, a loosely-coupled
parallel architecture such as a Hadoop cluster has some ad-
vantages over a GPU. The GPU architecture is based on a
single-program multiple-data programming model which pe-
nalizes diverging threads. Briefly, a GPU is composed of several
multiprocessors, each of which processes parallel threads in
batches called warps. Even though threads within a warp can
follow diverging paths, a GPU multiprocessor can only issue
one instruction per clock cycle. Hence, the execution of di-
verging threads is serialized: only those threads programmed to
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Table 2 Comparison of various photon migration Monte Carlo codes, according to the following parameters: RNG; the absorption and scatter
coefficients μa and μs, respectively; the size of the scoring grid; the acceleration platform; the photon throughput Tacc and Tref, expressed in
photons/ms, for the accelerated and reference (CPU) platform, respectively; and the speed up achieved.

Implementation RNG μa(cm−1) μs(cm−1) Scoring grid Platform Threads Tacc Tref Speed-up

MC-HP RAN3 0.0025 7.8 256 × 256 EC2 cloud 3,840 75,471 60 1258

MCX (atomic) (Ref. 16) LL5 0.05 10.1 60 × 60 × 60 G92 512 900a 12 75

MCX (approx.) (Ref. 16) LL5 0.05 10.1 60 × 60 × 60 G92 1792 3,800a 12 325

WMC-GPU (Ref. 15) MWC 0 90 200a 8800GT 26,880 1,747 1.6 1080

GPU-MCML (Ref. 17) MWC 0.015 708 100 × 100 GTX 480 13,440 384 0.4 870

aEstimated.

execute the current instruction can advance to the next in-
struction; others must wait for the multiprocessor to execute
their instruction. In a Monte Carlo simulation, particle paths
can diverge. For instance, high-energy photons can undergo a
wide range of physical interactions with matter. Furthermore,
a comprehensive model of dose deposition in matter requires
simulation of the electrons induced by Compton scatter and
photoelectric absorption. Because of these effects, naive GPU
implementations result in high thread divergence and modest
efficiency.10, 20 Simulation of photon migration in turbid media
can also lead to thread divergence: within one iteration, some
photons may traverse a boundary or be reflected; others may be
scattered or absorbed. Unlike GPU cores, CPU cores have dedi-
cated instruction units. Therefore, each parallel thread can issue
its own instruction on a clock cycle, independently of the other
threads. In a MapReduce job, parallel tasks are executed as in-
dependent processes by CPU cores, and are not penalized if they
diverge and follow different code branches. It should be noted
that the cores in a modern CPU can also issue special streaming
SIMD extension (SSE) instructions, which are applied simul-
taneously to up to four single-precision floating-point registers.
This lower level of parallelism cannot be automatically utilized
by MapReduce and requires the developer to specifically use
SSE instructions when developping the Map and Reduce tasks.

The Monte Carlo code used in this paper was intended as
a case study of MapReduce for a biomedical application. The
simplicity of the Monte Carlo code helped focus our presen-
tation on the mechanisms of task distribution. The principles
described in this paper can be applied to more complex photon
migration simulations, such as those that include a three dimen-
sional (3D) map of the optical coefficients5 or a multilayered
geometry.3 Hadoop has a distributed cache that can make a set
of files available to all the nodes in the cluster. This mecha-
nism can be used to broadcast the optical coefficient map to
all the nodes prior to starting the simulation. In our implemen-
tation, the distributed cache was used to transfer the MC321
binaries (100 kB) to all the nodes. Once the optical coefficients
are available on all the nodes, complex Monte Carlo simulations
using heterogeneous geometries may be performed by parallel
map tasks, with no internode communications. The outputs of
these parallel simulations may be combined by simple reduced
tasks, as demonstrated in this work. Apart from the initial broad-
cast of the optical coefficient map, the use of a more accurate

Monte Carlo package would require no additional data transfer
between nodes. The present work suggests that these more com-
plex Monte Carlo simulations would be accelerated by a factor
approximately equal to the number of nodes in the cluster.

In the MC-HP implementation, a singe Reduce task is used
to aggregate the outputs from all Map tasks. This approach may
not be fast enough to reduce large outputs (such as for instance
a 3D photon fluence matrix) from many Map tasks. Network
throughput may also be problematic since data are transferred
from many nodes to a single node, creating a bottleneck. To
alleviate this issue, parallel Reduce tasks can be generated by
setting Map tasks to output their data block by block, using the
key to encode the block index. The blocks may be composed of
slices for a 3D matrix, or rows in a 2D matrix. This data transfer
strategy has the advantage that it is decentralized: many data
transfer can occur in parallel, increasing the total bandwidth of
the cluster. For optimal efficiency, the number of Reduce tasks
can be set to the number of such blocks. After the Reduce step,
the blocks—which combine the computations of many Map
tasks—are written to distributed storage, from which they can
be downloaded.

Although it has its roots in text processing, Hadoop is an
evolving technology, continuously adding new features to ad-
dress the specific needs of a wider spectrum of users. As the
framework evolves, we expect that it will become more general-
purpose, and even better suited for scientific computation. For
example, Hadoop currently requires worker nodes to sort inter-
mediary records by key before applying the Reduce function.
This sorting step is unnecessary in scientific applications that
use keys as array indices. The open-source status of the Hadoop
project allows any developer to modify the framework as needed,
and possibly contribute back to the project.

6 Conclusion
The inexorable shift of computing to parallel architectures forces
us to rethink how algorithms are implemented. Porting an ap-
plication to a distributed environment is problematic because of
the complexity of the software development and the cost of a
large-scale computer cluster. For photon migration Monte Carlo
simulation, MapReduce helps overcome these two challenges
by providing a simple way to deploy massively-parallel applica-
tions in a cloud computing environment. The port of the MC321
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package to MapReduce was rapid, taking only a week; yet, the
code execution scaled to 1920 cores with few signs of diminish-
ing returns. The new distributed code includes features such as
fault tolerance and automated load balancing.
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