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ABSTRACT

Sparse view sampling is one of the effective ways to reduce radiation dose in CT imaging. However, artifacts
and noise in sparse-view filtered back projection reconstructed CT images are obvious that should be removed
effectively to maintain diagnostic accuracy. In this paper, we propose a novel sparse-view CT reconstruction
framework, which integrates the projection-to-image and image-to-projection mappings to build a dual domain
closed-loop learning network. For simplicity, the proposed framework is termed a closed-loop learning recon-
struction network (CLRrcon). Specifically, the primal mapping (i.e., projection-to-image mapping) contains a
projection domain network, a backward projection module, and an image domain network. The dual mapping
(i.e., image-to-projection mapping) contains an image domain network and a forward projection module. All
modules are trained simultaneously during the network training stage, and only the first mapping is used in the
network inference stage. It should be noted that both the inference time and hardware requirements do not
increase compared with traditional hybrid domain networks. Experiments on low-dose CT data demonstrate
the proposed CLRecon model can obtain promising reconstruction results in terms of edge preservation, texture
recovery, and reconstruction accuracy in the sparse-view CT reconstruction task.
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1. INTRODUCTION

Computed Tomography (CT) has been widely used in modern medical diagnosis and treatment due to its
fast imaging speed, high resolution, etc. However, patients will receive lots of radiation doses during the CT
examination, which is becoming a concern. Sparse-view scans can effectively reduce the radiation dose, but with
the decrease of the scan views, the image quality will degrade when using the traditional filtered back projection
(FBP) algorithm.

Numerous model-based iterative algorithms (MBIR) have been proposed for sparse-view CT reconstruction
in the past decade. With correct prior assumptions,1,2 the iterative algorithm can obtain high-quality images.
However, prior information is often manually selected, which cannot achieve desired results when it is not
completely consistent with the actual collected projection data. In addition, the iterative algorithm requires
repeated forward and backward projection until the desired image is obtained, which is time-consuming and
requires a lot of computing resources.

In recent years, deep learning has achieved great success in the CT reconstruction task. The deep learning
based reconstruction methods can be divided into the following three categories. The first category trains a
network mapping from low-dose data to normal-dose data in the image domain or projection domain.3–5 Some
scholars attempt to combine the image domain network with the projection domain network to form a hybrid
model.6,7 The second category expands the iterative reconstruction algorithms into a network.8–10 The third
category builds a projection-to-image reconstruction network.11–13 Through sufficient training, the network can
directly reconstruct the image without artifacts from sparse-view projection data. In addition, Tao et al.14
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Figure 1. The proposed closed-loop learning reconstruction framework.

proposed to learn in the view-by-view backprojection tensor (VVBP-Tensor), and the experiment found that
the results of this learning framework were significantly improved. At present, the application of deep learning
in CT reconstruction mainly completes the learning from projection to image. However, this process lacks the
constraint of comparing the difference between the calculated projection by projecting the reconstructed image
and the measured projection like iterative algorithms.

Different from traditional supervised learning or semi-supervised learning, dual learning forms a closed-
loop system by creating a dual problem of the primary problem. The primary problem and dual problem can
mutually promote learning each other through this closed-loop system, so as to obtain better learning. Dual
learning has been a great success in natural image processing such as image super-resolution15 and raindrop
removal.16 For CT reconstruction, the advantages of traditional iterative reconstruction algorithms in low-dose
CT reconstruction are mainly reflected in the use of forward and backward projection operators to update the
target image by error feedback. This process implies a constraint that the estimated projection obtained by
projecting the reconstructed image should be consistent with the measured projection. Inspired by these works,
we propose a closed-loop learning reconstruction model (CLRecon) for sparse-view CT reconstruction. In the
proposed CLRecon, the original problem is learning the mapping from measured projection to image, and the
dual problem is learning the mapping from image to measured projection. The mapping from image to projection
can effectively constrain the mapping from projection to image to learn in the right direction, thus helping to
improve the quality of reconstruction.

2. METHODS

2.1 Overview

Fig. 1 depicts the overview of our proposed closed-loop learning reconstruction framework. It consists of two
learning mappings. The primal mapping is used to learn the transformation from sparse-view projection to
reconstructed image, and the second one learns the dual mapping from reconstructed image to projection. The
primal mapping includes a projection domain network, a gradient returnable backward projection module which
is the implementation of FBP and an image domain network. The dual learning mapping consists of an image
domain network and a gradient returnable forward projection module.

2.2 Network Architecture

We build the backward projection module by implementing the FBP algorithm based on PyTorch deep learn-
ing library,17 which can retain gradient during forward propagation. Considering the sparsity of the system
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Figure 2. The architecture of the base network.

matrix, we construct it by sparse matrix. This greatly reduces memory requirements and makes it possible to
project the reconstructed image when training the network. In our proposed closed-loop learning sparse-view
CT reconstruction framework, sub-network G1, G2, G3 can be any network. In our next experiment, we chose
FBPConvNet18 as the base network and we remove the batch normalization layer as shown in Fig. 2.

2.3 Loss Functions

We adopt the simple mean square error (MSE) loss to train the network. To make network training constrained
by both label image and measured projection, we add the loss in both the image domain and projection domain.
For image domain loss, we can formulate it as follows:

Limg =
1

MN

M∑
i=1

N∑
j=1

‖X̂ij −Xij‖22, (1)

where X̂ is the output of the network and X is the label image. M is the number of samples in a batch and N
is the number of pixels in a sample. The projection domain loss can be formulated as follows:

Lproj =
1

MP

M∑
i=1

P∑
j=1

‖Ŷij − Yij‖22, (2)

where Ŷ is the output of the network and Y is the measured projection. P is the number of pixels in a sample.
If we have a full-view projection, Y can be a full-view projection for better performance. The full objective
function contains the image domain loss and the projection domain loss as follows:

Lmse = λLimg + (1− λ)Lproj, (3)

where λ is a parameter that balances image loss and the projection loss, and in this work, it is set to be 0.8.
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Figure 3. Reconstruction results of different networks with a view number of 72. Display window: [-160, 240] HU.

3. EXPERIMENTS

3.1 Data

We used AAPM Low Dose CT Grand Challenge datasets for evaluation which consists of routine dose CT and
the corresponding simulated LDCT data.19 We used 10976 slices from 34 patients for training the network and
1095 slices from 6 patients for validation and testing. We projected the images to obtain the simulation fan-beam
projection data. The geometry parameters projection were set as projection view number of 1152, detector bin
number of 736, image pixel space of 0.6934mm × 0.6934mm, and detector bin width of 1.2858 mm. In our
experiment, we extracted 72 views with equal angle distribution to simulate the sparse-view scan.

3.2 Implementation Details

The framework was implemented in Python based on PyTorch deep learning library.17 All reconstruction images
have a size of 512 × 512 and the sinograms are with a size of n × 1152, where n is the projection views. The
Adam optimizer20 was used to optimize the whole framework with the parameters (β1, β2) = (0.9, 0.999). The
learning rate drop linearly from 10−3 to 10−5. We trained the network on NVIDIA GeForce RTX 3090 GPUs.

4. RESULTS

4.1 Experimental Results on Mayo Data

4.1.1 Qualitative analysis

We compared our method with the recent deep-learning-based methods, including FBPConvNet,18 Framin-
gUNet,21 REDCNN,22 DDenseNet,3 FVVtensor.14 FBPConvNet is closer to the network we used, but we did
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(a) full-view (b) sparse-view (c) G2

(d) G1+G2 (e) G1+G2+FP (f) G1+G2+G3+FP

Figure 4. Reconstruction results of different combinations of modules. Display window: [-160, 240]HU.

Table 1. Quantitative comparison of different models.

Model RMSE SSIM

FBPConvNet 4.6328 0.8710

REDCNN 4.9033 0.8417

FVVTensor 4.2655 0.8827

FramingUnet 4.4261 0.8782

DDenseNet 4.4699 0.8770

FBPConvNet (projection) 5.0693 0.8603

Ours 3.7063 0.9004

not use the batch normalization layer as it did. FramingUNet, REDCNN, and DDenseNet optimized the network
structure for better performance. FVVtensor learns in VVBP-Tensor and obtains good results. We also applied
the FBPConvNet in the projection domain to repair sparse views projection directly.

Fig. 3 shows the visual comparisons of our method and other methods on the reconstructed images with 72
views. We show the full-view image, sparse-view image, and results of different models. To better compare the
results of different networks, the ROI in the image is enlarged at the bottom of the image. It can be observed
that our network can achieve excellent results in edge preservation and artifact removal.

4.1.2 Quantitative comparisons with state-of-the-art methods

Table 1 shows the quantitative comparison results of our method and other methods. It’s the average of all the
test slices. We can observe that our model achieves lower root mean square error (RMSE) and higher structured
similarity index (SSIM) than other methods, which can prove that our network can obtain better reconstruction
quality under these sparse-view degradation levels.
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Table 2. Quantitative comparison of different combinations of modules.

Model RMSE SSIM

G2 4.1230 0.8858

G1 +G2 3.9299 0.8937

G1 +G2 + FP 3.7685 0.8984

G1 +G2 +G3 + FP 3.7063 0.9004

4.2 Ablation Study

In our proposed CLRecon, we add image-to-projection mapping to the primal mapping (i.e., projection-to-image
mapping) and form a closed-loop learning system. To show the effectiveness of this procedure, we compared
the reconstruction results of different combinations of G1, G2, G3 and forward projection module (FP). Fig. 4
shows the visual comparisons of different combinations of modules. We can observe that the image quality can
be improved after adding G3 and FP. Table 2 shows the quantitative comparison results of different experiments.
We can see that it can achieve lower RMSE and SSIM with forward projection module and G3. The network
complexity did not increase because image-to-projection mapping was not used during the test stage. The
improvement of reconstructed image quality lies in the improvement of network learning strategy rather than
the increase of network depth. It proves that the proposed closed-loop learning can improve the reconstruction
quality in sparse-view CT reconstruction.

5. CONCLUSION

We have presented a closed-loop learning reconstruction model (CLRecon) for sparse-view CT reconstruction
in this paper. Specifically, the primal mapping is used to learn the transformation from sparse-view projection
to reconstructed image, and the dual mapping learns from reconstructed image to projection. Our experiment
shows that the addition of these two modules can improve the quality of the reconstructed image. Since this
mapping is only used in network training, the network parameters are not increased. The improvement of network
performance lies in the change of learning strategy.
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