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Abstract. Model observers intended to predict the diagnostic performance of human observers should account
for the effects of both quantum and anatomical noise. We compared the abilities of several visual-search (VS)
and scanning Hotelling-type models to account for anatomical noise in a localization receiver operating char-
acteristic (LROC) study involving simulated nuclear medicine images. Our VS observer invoked a two-stage
process of search and analysis. The images featured lesions in the prostate and pelvic lymph nodes.
Lesion contrast and the geometric resolution and sensitivity of the imaging collimator were the study variables.
A set of anthropomorphic mathematical phantoms was imaged with an analytic projector based on eight parallel-
hole collimators with different sensitivity and resolution properties. The LROC study was conducted with human
observers and the channelized nonprewhitening, channelized Hotelling (CH) and VS model observers. The CH
observer was applied in a “background-known-statistically” protocol while the VS observer performed a quasi-
background-known-exactly task. Both of these models were applied with and without internal noise in the deci-
sion variables. A perceptual search threshold was also tested with the VS observer. The model observers
without inefficiencies failed to mimic the average performance trend for the humans. The CH and VS observers
with internal noise matched the humans primarily at low collimator sensitivities. With both internal noise and the
search threshold, the VS observer attained quantitative agreement with the human observers. Computational
efficiency is an important advantage of the VS observer. © The Authors. Published by SPIE under a Creative Commons Attribution

3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI:
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1 Introduction
Medical images are routinely used to identify lesions within the
human body. These images are read by radiologists, who gen-
erally make the final judgment about the presence of a lesion.
Image quality is crucial for the radiologist to make the best pos-
sible judgment and may be improved by optimizing system
designs and acquisition protocols. However, it is expensive
and time consuming to conduct human-observer studies for
this purpose at every stage of developmental research. This
has led to the development of mathematical model observers
as surrogates for humans in diagnostic imaging studies. Of par-
ticular interest are model observers which can predict human
performance in clinically realistic tasks involving lesion search.
Such tasks should probe how quantum and anatomical noise in
the images affect observer performance. Anatomical noise is
background structure that masquerades as a lesion or which
obscures actual lesions. Together, quantum and anatomical
noise comprise the image texture.

Popular model observers such as the channelized Hotelling
(CH) observer1 operate based on prior information in the form of
image statistics. The statistics include covariance matrices that
characterize the noise in an image set. The level of prior infor-
mation afforded an observer is dictated by several well-known
task paradigms. For signal-known-exactly detection tasks, the

observer need only decide lesion presence at a fixed location.
Information about the background can be either exact [back-
ground-known-exactly (BKE)] or statistical [background-known-
statistically (BKS)]. The task of lesion detection and localization
is signal-known-statistically (SKS) in nature (e.g., the shape of
the lesion profile may be known although its location is varia-
ble), but may additionally be either BKE or BKS. These search
tasks can be performed by scanning versions of the CH observer
and other Hotelling-type models.2

With a BKE search task, a scanning model observer has
knowledge of the quantum-mean background corresponding to
the given test image. This knowledge greatly reduces the impact
of anatomical noise on task performance. For BKS search tasks,
the scanning CH observer computes image class means and
covariances that account for anatomical variations. This compu-
tation can be extensive since the covariance matrices must be
computed at all possible lesion locations. Moreover, it is unclear
whether, given the covariance information, the scanning CH
observer can adequately quantify how human observers respond
to anatomical noise in individual images.

As an alternate approach, we have been investigating
observer models which use less statistical knowledge.3,4 These
models perform distinct target search and analysis procedures,
thereby simulating the visual-search (VS) process that trained
radiologists engage in to interpret medical images.5 Our VS
model observer applies a feature-guided search that identifies
target-like structure for subsequent analysis. For this study,
the observer identified hot “blobs” (regions of elevated tracer*Address all correspondence to: Howard C. Gifford, E-mail: hgifford@uh.edu
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uptake) as candidates, which may be actual lesions or false pos-
itives. Statistical information about the image background was
only supplied for the candidate analysis, at which point some
nonconspicuous lesions may have been ignored. The SKS
task paradigm is a key constraint for the model, as many of
the complex processes of human vision and cognition are not
accounted for. The effects of image texture are nonetheless
intrinsic to search performance with this relatively simple
model.

We tested the VS and scanning CH observers as competing
ways of predicting human-observer performance in a realistic
search task involving both quantum and anatomical noise.
The task was detection and localization of pelvic lesions in
simulated In-111 planar nuclear medicine images. A localization
receiver operating characteristic (LROC) study examined how
observer performance was affected by the resolution-
versus-sensitivity trade-offs among a family of medium-energy
imaging collimators. The human observers in our study read a
subset of the images considered by the model observers.
Comparison was also made with a channelized nonprewhitening
(CNPW) observer that performed both BKE and BKS
search tasks.

Human observers are often modeled as ideal observers with
added inefficiencies.6 In our study, the CH and VS observers
were applied with and without internal noise that was added to
the observers’ decision variables. In addition, the VS model
was tested with a perceptual search threshold7 that rejected rel-
atively nonsuspicious search candidates. Various covariance-
based internal-noise models have been proposed for the CH
observer,8 but the motivations for choosing one model or
another are often unclear. The inefficiencies that were tested for
the VS observer may afford a better intuition.

2 Model Observers

2.1 Framework for Localization Receiver Operating
Characteristic Studies

All search tasks in our study used two-dimensional (2-D) slices
extracted from reconstructed three-dimensional (3-D) volumes.
A test image of size N × N is represented by the N2 × 1 vector g.
This image could contain a single lesion within a region of inter-
est (ROI) Ω. With the lesion centered at pixel j ∈ Ω, the test
image can be regarded as

EQ-TARGET;temp:intralink-;e001;63;276g ¼ bþ sj þ n; (1)

with anatomical background b, lesion image sj, and zero-mean
quantum noise n. Lesion-absent images are comprised of only b
and n. The background can vary with image. We denote the
quantum-mean lesion-present image for fixed location j as
hginjb;j ¼ bþ sj, where the bracket notation indicates an aver-
age over n with b and j fixed. The corresponding mean lesion-
absent image is hginjb;0 ¼ b. With additional averaging over
anatomical background, we have the mean images hgin;bj0 ¼
b̄ and hgin;bjj ¼ b̄þ sj. Thus, b̄ is the mean background image
computed over all anatomical realizations of b.

Given test image g in a LROC study, a model observer first
computes a perception measurement λj for every location j
within Ω, and then reports the most suspicious lesion location
r and a confidence rating λ according to the formulas

EQ-TARGET;temp:intralink-;e002;63;90λ ¼ max
j∈Ω

λj; (2)

EQ-TARGET;temp:intralink-;e003;326;741r ¼ argmax
j∈Ω

λj: (3)

An image with rating λ is read as lesion-present (or abnormal) at
threshold λt if λ > λt. An abnormal image is said to have been
localized correctly if the predicted location is within a threshold
distance [the radius of correct localization (RCL)] of the true
location. The LROC curve plots the probability of a true-
positive response conditioned on correct localization against
the probability of a false-positive response as λt varies. The
area under the LROC curve is an accepted figure of merit for
observer performance.

2.2 Scanning Observers for Detection-Localization
Tasks

The Hotelling-type scanning observers in this work computed
linear perception measurements for all j ∈ Ω using the general
formula

EQ-TARGET;temp:intralink-;e004;326;546λobsj ¼ ðwobs
j Þt½g − cj�; (4)

where the superscript t indicates transpose and wj is a location-
and observer-specific scan template that is the same size as g.
The location-dependent reference image cj sets the measure-
ment origin. With BKE tasks

EQ-TARGET;temp:intralink-;e005;326;469cj ¼
hginjb;0 þ hginjb;j

2
¼ bþ 1

2
sj; (5)

while b is replaced by b̄ for BKS tasks.9

For this work, the lesion profile was assumed to be shift-
invariant. In fact, the lesion profile in our test images changed
slightly with location due to attenuation effects, but the effect
was largely imperceptible. We thus computed a location-aver-
aged profile s̄ for use by the model observers. The subscript
on s̄j implies a shift of the profile to the jth location. How
this mean profile was computed is described in Sec. 3.5.

2.3 The Scanning Channelized Hotelling Observer

For BKS search tasks, the scanning CH observer uses the refer-
ence image

EQ-TARGET;temp:intralink-;e006;326;286cj ¼ b̄þ 1

2
s̄j; (6)

in which we have accounted for the shift-invariant lesion profile.
The scanning template for the CH observer takes the form

EQ-TARGET;temp:intralink-;e007;326;222wCH
j ¼ UjK−1

j Ut
js̄j; (7)

where Uj is a shift-invariant N2 × Cmatrix whose columns con-
tain the spatial responses at location j from a fixed set of C
ðC ≪ NÞ spatial-frequency channels, andKj is the location-spe-
cific C × C channel covariance matrix. For this work, the matrix
was computed as

EQ-TARGET;temp:intralink-;e008;326;139Kj ¼ hUt
jðg − b̄Þðg − b̄ÞtUjin;bj0; (8)

where the bracket notation indicates only lesion-absent images
were used based on the assumption that the presence of a low-
contrast lesion would not substantially affect these calculations.
The dependence on n and b in Eq. (8) is implicit in g [see

Journal of Medical Imaging 015502-2 Jan–Mar 2016 • Vol. 3(1)

Sen and Gifford: Accounting for anatomical noise in search-capable model observers for planar. . .



Eq. (1)]. It is important to note that the CH template is shift-vari-
ant due to the location-specific covariances.

When Kj includes the anatomical variations, the scanning
CH observer operates under an SKS-BKS task paradigm. In
that case, Kj can be decomposed into a sum of quantum-
noise and anatomical-noise components.10 A mean quantum-
noise covariance Kquant

j is

EQ-TARGET;temp:intralink-;e009;63;675Kquant
j ¼ hhUt

jðg − bÞðg − bÞtUjinjb;0ib: (9)

The quantum-mean backgrounds are also used to compute
the anatomical-noise covariance via the formula

EQ-TARGET;temp:intralink-;e010;63;618Kanat
j ¼ hUt

jðb − b̄Þðb − b̄ÞtUjib: (10)

2.4 Visual-Search Observers

The VS observer3 offers an alternative approach to accounting
for anatomical noise in model observer performance of lesion-
search tasks. Based on the VS paradigm proposed by Kundel
et al.5 for how radiologists read images, the VS observer com-
bines a front-end search for suspicious candidate locations with
subsequent analysis of just those candidates. Lesion detection in
nuclear medicine is frequently a hot-spot search, which our
basic VS observer performs through segmentation of the test
image into blobs. As background knowledge is not incorporated
into the search, a given blob may be a lesion or an artifact of the
image texture. At the same time, actual lesions may be masked
by the texture. The search process is thereby implicitly affected
by both quantum and anatomical noise. The pixel with the maxi-
mum greyscale intensity in a given blob constitutes the blob
focal point. The set of focal points within the ROI Ω comprises
a relatively small set of candidate locations for the observer.

The search is followed by a directed analysis of these can-
didate locations. Various discriminants may be used for this
analysis. Many of our earlier studies3,11 have used the scanning
CNPW discriminant. In scanning mode, the CNPWobserver can
be viewed as a nonprewhitening approximation to the CHO,
with the shift-invariant template

EQ-TARGET;temp:intralink-;e011;63;312wCNPW
j ¼ UjUt

js̄j: (11)

Herein, the CNPW discriminant was applied to the candidate
locations under a BKE assumption. With this form of candidate
analysis, the VS observer task as a whole is quasi-BKE. Given
the shift-invariant lesion profile, the BKE reference image for
Eq. (4) is cj ¼ bþ 1

2
s̄j, but the lesion term may be ignored

since the CNPW template is also shift-invariant.
The CNPW discriminant was also tested separately as a scan-

ning observer in our study, being applied for both BKE and BKS
tasks. The BKE task with cj ¼ b represented lesion detection in
reconstructed quantum noise. The reference image for the
BKS task was cj ¼ b̄. We shall use the notation CNPW-BKE
and CNPW-BKS to differentiate these two observer/task
combinations.

3 Methods

3.1 Model-Observer Specifications

Based on previous work,2,12 a set of three difference-of-
Gaussian channels was selected for both the CH and CNPW

observers. Defined in the frequency domain, the ith channel
ui has elements

EQ-TARGET;temp:intralink-;e012;326;730uiðξÞ ¼ exp

�
−
� kξk
2iþ1σ0

�
2
�
− exp

�
−
� kξk
2iσ0

�
2
�
; i ¼ 0;1; 2;

(12)

with ξ the 2-D spatial frequency in cycles per pixel and
σ0 ¼ 0.015. The spatial response of the channel is the inverse
Fourier transform of ui.

The image segmentation for the VS observer was performed
with a watershed algorithm, a computationally efficient routine
that is available in many software packages. A less-efficient gra-
dient-ascent segmentation method yielded similar results in pre-
vious VS observer studies.4 With the watershed algorithm, a 2-D
test image is viewed as a topographic landscape with holes at the
local minima.13 When the landscape is lowered into a tank of
water, water starts to fill the “catchment basins” around the
holes. Dams (or watersheds) are constructed at points where
water from two or more catchment basins meet. Once the entire
landscape has been submerged, these catchment basins define
the segmented blobs. The watershed algorithm is frequently
applied to the gradient magnitude of an image. We instead
applied the algorithm to the additive inverse of the test image
in order to avoid the noise penalties involved in computing the
gradient. With this approach, the minimum pixel within a given
catchment basin represented a focal point.

Details about the training for the model observers are pro-
vided in Sec. 3.5.

3.2 Model-Observer Inefficiencies

3.2.1 Internal noise

Given the same image, human observers can make different
decisions at different times. With the model-observer formula-
tions presented above, the decision for a given image would
never change. To address this issue, we experimented with add-
ing internal noise to the CH and VS observers. The noise was
implemented by adding a random Gaussian deviate to the per-
ception measurements λj. The width of the Gaussian distribution
was selected relative to the standard deviation σI of the set
fλj∶j ∈ Ωg for a given set of training images. With Nð0;1Þ rep-
resenting a random deviate from a Gaussian distribution with
zero mean and unit standard deviation, the noisy measurement
was given by

EQ-TARGET;temp:intralink-;e013;326;250λ̃j ¼ λj þ Nð0; γσIÞ: (13)

Values of γ between 0.5 and 2.0 were tested.
For the CH observer, internal noise can also be implemented

through the covariance matrices instead of the analysis statistic.
Several models of this type are discussed by Zhang et al.8 A
corresponding process for the VS observer would be to add
internal noise during the candidate search.7

3.2.2 Perceptual search threshold

A second type of model inefficiency applied in our study was
specific to the VS observer. Recall from Sec. 2.4 that the VS
observer identifies blob focal points as suspicious candidates
by means of image segmentation. The segmentation can produce
many candidates that human observers would ignore. The result,
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particularly with high-count images, is that the BKE analysis
with the CNPW discriminant will often locate the lesion. In
such cases, the VS and CNPW-BKE observers may perform
similarly. A solution is to limit the set of candidates by setting
a threshold τ such that a focal point with greyscale intensity less
than τ is disregarded. Parameter τ is thus comparable to the
drowning threshold described in the watershed literature.14

This threshold was calculated with reference to the focal
points from a set of training images. Each training image yielded
a number of focal points, some of which were lesion-absent. The
set of greyscale intensities from all of the lesion-absent focal
points in the training images produced a distribution with
mean and standard deviation denoted by μl and σl, respectively.
We tested search thresholds of the form τ ¼ μl þ βσl for four
different scaling factors β between 0.2 and 0.8.

Figure 1 shows the greyscale distributions of the normal and
abnormal focal points obtained from a training set of images.
The distributions are approximately Gaussian. Threshold values
of particular interest might lie in the zone between the dashed
vertical lines where the disease status is not obvious.

3.3 Planar Imaging Simulation

The 3-D XCAT anthropomorphic phantom15 was used for our
studies, with the volume of interest consisting of the pelvic
and abdominal regions. This region was discretized to voxel
dimensions 1283. Five In-111 biodistributions were simulated
in the volume and then imaged with an analytic projector.
Our simulation modeled a system with medium-energy paral-
lel-hole collimators and accounted for nonhomogeneous photon
attenuation and distance-dependent collimator blur. Eight colli-
mators that varied in terms of spatial resolution and sensitivity
were tested (see Sec. 3.4). Noise-free projections were calcu-
lated for the two principle In-111 energies (171 and 245 keV),
scaled for the abundance and absorption coefficients of a
NaI detector with 1-cm crystal thickness, and then added.
Additional details about the system model can be found in
our previous work.11

Spherical soft-tissue lesions of diameter 1 cm were consid-
ered. A lesion-placement map contained the prostate and lymph-
node regions of the XCAT volume. The projection of this map
represented the search region Ω for the model observers in our
study. A total of 225 distinct lesion locations were randomly
generated from the map, with roughly equal distribution
between the prostate and the lymph nodes. Two lesion-to-pros-
tate relative activities (or contrasts) of 16:1 and 24:1 were used.
Lesion projections were created separately, scaled for contrast
and then added to the noise-free background projections to
form noise-free lesion-present data.

The addition of Poisson noise to the projections was guided
by photon count levels from clinical data. The mean number of
counts in a projection varied with collimator as described next.

3.4 Collimators and System Resolution

Our LROC study compared observer performance with different
collimators. This section reviews the properties of a gamma-
camera collimator and how these properties affect image forma-
tion. The two main parameters for a parallel-hole collimator are
the hole length L and the hole width d, both of which affect the
collimator blur and count sensitivity. The number of counts per
unit time η for regular hexagonal holes obeys the proportional-
ity η ∼ 0.65d2.16

The system spatial resolutionRsys of a gamma camera has two
components: intrinsic resolution and distance-dependent geomet-
ric resolution. Expressed in terms of the full-width at half-maxi-
mum of a Gaussian blur function, the resolution for photons
emitted at a distance c from the face of the collimator is

EQ-TARGET;temp:intralink-;e014;326;546RsysðcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
int þ R2

geomðcÞ
q

: (14)

The geometric component of the system resolution is com-
pletely determined by L and d according to the formula

EQ-TARGET;temp:intralink-;e015;326;485RgeomðcÞ ¼
dc
L

; (15)

while the intrinsic resolution depends on the gamma-ray energy
and the crystal material. For the In-111 energies and a NaI detec-
tor, typical intrinsic resolutions are between 0.3 and 0.4 cm.17

Note that geometric resolution can also be defined in terms of
distance from the face of the crystal.

For typical values of c in patient imaging, the system reso-
lution may be expressed with the linear model

EQ-TARGET;temp:intralink-;e016;326;367RsysðcÞ ¼ mcþ R0; (16)

with slope m ¼ d∕L and the intercept R0 ≈ RsysðcÞ −mc for a
suitably large value of c.

Our study modeled variants of a typical medium-energy col-
limator with L ¼ 4.06 cm and d ¼ 0.294 cm. Eight collimators
were defined by varying d between 0.044 and 0.394 cm in incre-
ments of 0.05 cm while keeping L constant. The intrinsic res-
olution was fixed at 0.38 cm. The relevant collimator parameters
are listed in Table 1. The collimators are labeled using the nota-
tion C1, . . . , C8, listed in order of increasing d. The resolutions
given in the table were computed for a distance c ¼ 4L. The
sensitivities η have units of millions of counts per unit time.

As η and Rsys both increase monotonically with d, our study
examined the trade-off between sensitivity and spatial resolution
in terms of observer performance. Low sensitivity leads to rel-
atively higher quantum noise in the images, whereas low reso-
lution increases anatomical noise due to partial-volume and
blurring effects. Sample images obtained with the collimator
models for two lesion-present cases are shown in Fig. 2.

3.5 Observer Studies

The model observers read images for each of the 16 combina-
tions (2 × 8 ¼ 16) of lesion contrast and collimator type in our
study. For each combination, three image sets were prepared. A
set of 450 test images consisted of a lesion-present/lesion-absent

Fig. 1 Example greyscale intensity distributions for the normal and
abnormal focal points identified by the VS observer in an image set.
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pair for each of the 225 lesion locations. The remaining two
sets were for model-observer training. One set of 225 images,
representing different quantum-noise realizations for the 225
lesion-absent test images, was used to compute the channel
covariance matrices for the CH observer. The channel covari-
ance matrices were precomputed (but not preinverted) for

the study. The second training set contained 25 lesion-present/
lesion-absent image pairs that were generated from distinct
quantum-noise realizations for a subset of the 225 lesion loca-
tions. This latter set was used to estimate the mean lesion profile
s̄. Taking the difference between a given image pair yielded a
noisy lesion profile centered at one location. This profile was

Table 1 Parameters for the eight collimator models. System resolution Rsys was measured at distance c ¼ 4L from the collimator face. The count
sensitivity η has units of millions of counts per unit time.

Collimator

C1 C2 C3 C4 C5 C6 C7 C8

d (cm) 0.044 0.094 0.144 0.194 0.244 0.294 0.344 0.394

Rsys (cm) 0.402 0.473 0.575 0.695 0.824 0.960 1.100 1.240

η 0.04 0.19 0.45 0.81 1.23 1.87 2.55 3.35

Fig. 2 Sample study images obtained for a pair of high-contrast lesion cases: (a) a prostate lesion; (b) a
lymph-node lesion. For both cases the first row consists of images from collimators C1 to C4 and the
bottom row C5 to C8. The lesion position for each case is indicated by the white arrow in the first image.
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shifted to the center of the field of view. This process was
repeated for all the image pairs and the resultant center-shifted
profiles were averaged to get s̄. Note that the quantum-mean
backgrounds used by the model observers were approximated
by noise-free reconstructions.

Institutional approval was obtained to allow the participation
of human observers and informed consent was obtained from
each observer prior to the study. The human-observer study
was restricted to the high-contrast image sets from the five col-
limators with the highest model-observer performances. Three
nonradiologist imaging scientists participated in the study. Each
observer read 25 training images and 50 test images per colli-
mator. The observers provided confidence ratings on a four-
point scale, with a rating of four implying high confidence that
the image contains a lesion.

Correct localizations for all observers were scored based on
an RCL of five pixels. This threshold radius was selected by
following the empirical graphing process described in Wells
et al.18 For each observer, a Wilcoxon estimate19 of the area
under the LROC curve (AL) was computed. The average human
performance for a given collimator was computed as the average
of AL from the three observers. Uncertainties are expressed as
�one standard error in these averages.20 For a model observer
featuring internal noise, AL was computed as the average per-
formance based on three study realizations. The computational
expense of running the CH observer was the reason for using
only three realizations.

Separate analyses of variance (ANOVA) were conducted to
test the statistical significance of the human and model-observer
results. Collimator model and observer were fixed factors for the
two-way ANOVA based on the human data. A three-way
ANOVA with the model-observer data included lesion contrast
as a main factor and the relevant two-way interactions. Signi-
ficance was evaluated at the α ¼ 0.05 level.

4 Results
The human-observer results from our study are summarized in
Table 2. The uncertainties in individual observer performance
were on the order of �0.06. The two-way ANOVA indicated a
significant collimator effect (p ¼ 8.6E-4) but the observer effect
was not significant (p ¼ 0.075). A subsequent Tukey multiple
comparisons test21 found significant differences between C6 and
the group {C2, C3, C4}. Collimator C5 was positioned in-
between, with the data unable to distinguish it from C4 or C6.

Figure 3 shows how the model observers without internal
noise or search threshold performed as a function of collimator
and lesion contrast. The average human-observer results are
included in Fig. 3(b). The uncertainties in the AL estimates

for each of the model observers did not exceed �0.02. With
the high-contrast lesions, the model observers showed some
qualitative similarities with the humans for the low-sensitivity
collimators, but did not match the substantial drop in human
performance that occurred with increased sensitivity.

The ANOVA (Table 3) and multiple-comparisons testing
applied to the model-observer data indicated that collimator C1
performed significantly worse than the other collimators.
The differences between each observer were also significant.
Affected almost entirely by quantum noise, the CNPW-BKE
observer consistently outperformed the other three model
observers, each of which also contended to some degree with
anatomical noise. In particular, the CNPW-BKE observer per-
formed at a high level with collimators C2 to C8 regardless
of lesion contrast. The differences in performance that occurred
between the CNPW-BKE and VS observers are attributable
solely to the initial candidate search performed by the latter. The
greatest deviations from CNPW-BKE performance occurred
with the CNPW-BKS observer for collimator C1. The two
CNPW observers otherwise performed similarly for collimators
C2 to C4, only beginning to diverge once more with increased
anatomical noise. The performance trends for the CNPW-BKS
and CH observers were also similar, although the covariance
noise modeling for the CH observer substantially moderated the
effects of the reference-image subtraction for some collimators.
The CH observer consistently outperformed the VS observer.

The performance trends in Fig. 3 for the scanning observers
were largely independent of lesion contrast. This was not
entirely so for the VS observer, for which Fig. 3(b) demonstrates
an upward deflection in performance with the higher collimator
sensitivities that does not show in Fig. 3(a). The deflection is
small, with AL increasing by 0.02 between C4 and C8, while
performance with the low-contrast lesions decreased over that
span. The BKE analysis is at the root of this variable behavior,
amplifying the image quality effects of the higher lesion contrast
and increased sensitivity. As shown below, some of the effects of
the BKE assumption can be mitigated by the addition of percep-
tual inefficiencies to the observer.

Of course, the scanning models also relied on some prior
knowledge of the image backgrounds that the human observers
did not have. Internal noise is routinely added to Hotelling-type
observers to compensate for this knowledge. The results from
adding Gaussian noise to the perception measurements for
the high-contrast lesions with the CH observer are shown in
Fig. 4. The standard errors in the estimates of AL for the
model observers with inefficiencies were ∼� 0.03. Within
the range of γ values tested, the added noise steadily reduced
performance at all collimator sensitivities, but tended to penalize

Table 2 Individual and average human-observer performances for the five tested collimator models C2–C6. The uncertainties in AL for the
individual observers are �0.06. The uncertainties in average performance represent one standard error in the mean.

Observer

Collimator

C2 C3 C4 C5 C6

Human #1 0.91 0.91 0.84 0.74 0.72

Human #2 0.80 0.83 0.78 0.69 0.67

Human #3 0.87 0.92 0.80 0.63 0.55

Average 0.86� 0.03 0.89� 0.03 0.81� 0.02 0.69� 0.03 0.65� 0.05
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performance with the lower sensitivities most. Thus, none of the
model observer curves in Fig. 4 reproduced the performance
trend displayed in the average human observer data. The left
and right ends of the human performance curve were quantita-
tively fit with different values of γ.

Figure 5 shows the individual effects of internal noise and
search thresholding for the VS observer. Figure 5(a) pertains
to the internal-noise results. As with the CH observer, changes
in γ generated performance changes that were fairly uniform
with sensitivity. However, the VS observer was less affected by
a given value of γ compared to the CH observer. An interesting
outcome for γ ≥ 1.5 was the establishment of a nominal perfor-
mance peak for C3 that mirrored the average human observer
results.

With the search threshold [Fig. 5(b)], the VS observer was
able to duplicate the considerable drop in average human per-
formance that occurred at the higher sensitivities. However, the
threshold had a negligible effect on observer performance at the
lower sensitivities. The relatively high system resolutions with
those collimator models ensured that actual lesions would gen-
erally be associated with focal points having greyscale maxima
that exceeded the threshold.

We also investigated how the VS observer responded with
internal noise and the search threshold together. There were
16 inefficiency models in all, corresponding to the four values
of β and four nonzero values of γ that were used for the plots in
Fig. 5. Figure 6 compares the average human performance with
the best-fitting results from the VS observer that used γ ¼ 1.5
and β ¼ 0.6.

The computation times for the scanning and VS model
observers in this study were disparate. Recall that the channel
covariance matrices for the CH observer were computed (but not
inverted) prior to the study. Despite this preprocessing, the CH
computation times were relatively high: ∼90 min in IDL
(Interactive Data Language, Exelis Visual Information Solu-
tions, Boulder, Colorado) to read 450 test images compared
to less than a minute for the VS and CNPW observers. These
timings are for the model observers without internal noise or
search thresholding. The lesion search region for the model
observers contained 380 locations. From this, the VS observer
averaged between 20 and 40 focal points per image, with the
higher numbers associated with lower collimator sensitivities.
However, the code implementation of the candidate analysis
did not exploit this search reduction.

5 Discussion
Our objective with this work was to compare the VS and scan-
ning CH observers as surrogates for human observers in task-

Fig. 3 Model-observer and average human-observer performance as a function of collimator and lesion
contrast. Themodel observers were applied without inefficiencies. (a) Model-observer performances with
the low-contrast lesions; (b) human and model-observer performances with the high-contrast lesions.
Uncertainties for the model observers did not exceed �0.02.

Table 3 Results from the three-way ANOVA conducted with the
model-observer scores. The analysis tested collimator, observer
and lesion contrast as factors. All three effects and two-way inter-
actions were significant at the α ¼ 0.05 level.

Factor df ss F Pr (>F)

Collimator 7 0.30 193.94 <2.2E-16

Contrast 1 0.040 181.50 <8.4E-12

Observer 3 0.037 56.14 <3.4E-10

Collimator:Contrast 7 0.081 53.24 <6.0E-12

Collimator:Observer 21 0.016 3.44 0.003

Contrast:Observer 3 0.0036 5.46 0.006

Residuals 21 0.0046
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based assessments. A focus for the comparison was how these
model observers respond to anatomical noise. The image sets in
the planar imaging study presented varying proportions of quan-
tum and anatomical noise as dictated by the collimator sensitiv-
ity and spatial resolution. Without inefficiencies, neither model
observer matched the magnitudes or general trend in average
human performance as anatomical noise increased in the
images. The results with the observer inefficiencies show that
the two models admit different sets of mechanisms for improv-
ing the agreement with the humans.

One must keep in mind the different task paradigms used
with the CH and VS observers. With the CH observer, anatomi-
cal noise is equated with background variability as quantified by
the image class statistics. Adding internal noise terms to the
channel covariance matrices is a common means of reconciling

(a)

(b)

Fig. 5 Individual effects of internal noise and search thresholding on VS observer performance with the
high-contrast lesions. (a) Effects of internal noise; the noise parameter γ varied from 0 to 2.0, with γ ¼ 0
indicating no noise. (b) Threshold effects; the threshold parameter β varied from 0.2 to 0.8. The uncer-
tainties in model-observer performance were �0.03.

Fig. 4 Effects of internal noise on CH observer performance with the high-contrast lesions. The noise
parameter γ varied from 0 to 2.0, with γ ¼ 0 indicating no noise. Also shown is average human perfor-
mance. The uncertainties in model-observer performance were �0.03.

Fig. 6 Effects of applying the VS observer with multiple inefficiencies.
Average human performance is compared with the performance from
the VS observer corresponding to γ ¼ 1.5 and β ¼ 0.6. The uncertain-
ties in model-observer performance were �0.03.
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differences with human observers. One may also inject greater
anatomical noise into the model observer by modifying the
reference image cj [Eq. (6)], although comparison of the
CNPW-BKE and CNPW-BKS results suggests this approach
primarily affects observer performance with the higher-resolu-
tion collimators. Previous studies have also shown that exces-
sive modification of the reference image can lead to artifacts that
create persistent false positives for the observer.3

For the VS observer tested herein, anatomical noise only
affects the initial candidate search since the analysis is a
BKE process. Furthermore, the separate influences of quantum
and anatomical noise are not discerned in the search. Instead,
image texture as a whole impedes the identification of lesions
as focal points. Accounting for noise in this manner effectively
expanded the dynamic range in observer performance across the
full set of collimators compared to the scanning models. Trans-
lating this expansion into greater statistical power will depend
on developing methods of candidate analysis that are indepen-
dent of the BKE and BKS paradigms. The use of greyscale
intensity as the sole search feature for the VS observers in our
study was only possible because of the BKE analysis. One
promising alternative is based on the extraction of multiple mor-
phological features.22

Overall, the VS framework provides a relatively flexible
environment for studying observer inefficiencies. As shown
in Fig. 5, different inefficiencies can influence different parts
of parameter space, offering an intuition that is not always avail-
able with covariance modeling of internal noise. The VS
observer attained quantitative agreement with the human
observers, but this was the result of ad hoc fitting of the internal
noise and search threshold parameters (γ and β, respectively). A
version of the VS observer that can be reliably applied without
the BKE or BKS background paradigms may require smaller
amounts of internal noise and other inefficiencies to approxi-
mate human-observer performance, and discussion of how to
set the inefficiency and noise parameters should await develop-
ment of such a model.

Computational efficiency is another important point of com-
parison for the CH and VS observers. Runtimes for the CH
observer were substantially longer than for the VS observer.
Preinverting the covariance matrices would have improved effi-
ciency, but the main factor in the longer times was the shift-vari-
ant CH observer template. With regard to the amount of
preprocessing required for the CH observer, one must recognize
that the background variations in this study were restricted to
modeling different In-111 biodistributions in a single geometry
of the XCAT phantom, so that the computation of Kanat

j
[Eq. (10)] and b̄ was relatively simple. A more extensive
study involving multiple phantom geometries could complicate
the BKS computations by involving intensive Monte Carlo sim-
ulations as demonstrated for nonsearch tasks by Kupinski et al.23

Observer studies with reconstructed images would substantially
increase the computing time,24 as would studies involving larger
regions of interest, high-resolution imaging or image volumes.

Finally, there were a number of basic limitations with this
study for purposes of collimator optimization, including the
use of an analytic projector that disregarded the considerable
scatter and penetration potential of In-111. Still, the results
are relevant to the practice of task-based collimator optimiza-
tion. The accepted approach to hardware optimization is to
apply ideal observers in projection space; the scanning CH
observer has been used previously as an approximate ideal

observer (although with channels other than what was used
herein25). VS observer development has focused instead on mod-
eling human observers as the gold standard for lesion-detection
performance in much of diagnostic imaging. The planar imaging
framework allows for an even comparison of the two approaches
to optimization. Follow-up studies will analyze the prospects for
optimization studies based on increasingly realistic detection
tasks with the VS observer.

6 Conclusions
When applied without inefficiencies, the VS and CH observers
failed to match either the magnitudes or the general trend in
average human performance as anatomical noise increased in
the images. The result for the VS observer is partly attributed
to reliance on the quasi-BKE task, which artificially inflated
observer performance in images with high anatomical noise.
Overall, the VS model observer offers a flexible and computa-
tionally efficient framework for studying the combined effects
of quantum and anatomical noise in lesion search tasks. Future
studies will examine versions of the model that are independent
of the standard BKE/BKS task paradigms.
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