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Abstract. Up to 25% of children who undergo brain tumor resection surgery in the posterior fossa develop pos-
terior fossa syndrome (PFS). This syndrome is characterized by mutism and disturbance in speech. Our hypoth-
esis is that there is a correlation between PFS and the occurrence of hypertrophic olivary degeneration (HOD) in
structures within the posterior fossa, known as the inferior olivary nuclei (ION). HOD is exhibited as an increase
in size and intensity of the ION on an MR image. Longitudinal MRI datasets of 28 patients were acquired con-
sisting of pre-, intra-, and postoperative scans. A semiautomated segmentation process was used to segment
the ION on each MR image. A full set of imaging features describing the first- and second-order statistics and
size of the ION were extracted for each image. Feature selection techniques were used to identify the most
relevant features among the MRI features, demographics, and data based on neuroradiological assessment.
A support vector machine was used to analyze the discriminative features selected by a generative k-nearest
neighbor algorithm. The results indicate the presence of hyperintensity in the left ION as the most diagnostically
relevant feature, providing a statistically significant improvement in the classification of patients (p ¼ 0.01) when
using this feature alone. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-

duction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI.2.4.044502]
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1 Introduction
The posterior fossa is the most common site for intracranial
tumors in children. Up to 1 in 4 children who undergo brain
tumor resection surgery in the posterior fossa develop a syn-
drome known as posterior fossa syndrome (PFS).1 This syn-
drome, also known as cerebellar mutism syndrome, describes
a set of neurological symptoms that may develop from 24 to
107 h after surgery.2,3 Children suffering from PFS characteristi-
cally suffer from disturbance in speech and mutism but may also
suffer from loss of muscle tone, incontinence, strabismus (cross-
eyed), dysphagia, and personality changes such as anger, apathy,
melancholy, crying, and screaming.2 The development of such a
syndrome in children hinders their development and highly
impacts their quality of life. Although PFS is a postsurgical
complication, the exact underlying pathophysiological mecha-
nism remains unclear, although it is widely considered to
involve disruption of the proximal efferent cerebellar pathways
(pECP) that connect the cerebellum to the forebrain. In order to
reduce the incidence of PFS and manage children with this dis-
order, it is important to identify imaging biomarkers that are
associated with it.

Our hypothesis, based on qualitative interpretation of imag-
ing and clinical experience, is that there is a correlation between
PFS and the occurrence of hypertrophic olivary degeneration
(HOD) in structures known as the inferior olivary nuclei
(ION). These structures, shown in Fig. 1, are paired nuclei in
the brain stem, which send efferent outputs to the cerebellum,

and receive inputs from the pECP. HOD is exhibited as an
increase in size and intensity of the ION on an MR image
that in routine clinical practice is identified qualitatively by a
neuroradiologist.4 Qualitatively, HOD appears a number of
months after surgery on routine postoperative surveillance im-
aging, i.e., well after the patient is diagnosed with PFS. We thus
hypothesize that HOD represents the “smoking gun” that a pre-
ceding damaging event to the relevant pathways connected to
the ION has occurred.

Intraoperative MRI (IoMRI) is increasingly used to ensure
the tumor is removed safely, e.g., in the resection of posterior
fossa tumors. IoMRI is used during posterior fossa tumor resec-
tion. The use of IoMRI increases the likelihood that the entire
tumor is removed and hence increases the likelihood of success
after surgery,5,6 but PFS can occur after attempting total resec-
tion of tumor causing injury to important structures.
Furthermore, the final MR scan acquired using IoMRI provides
quantitative information about the state of the ION immediately
after the surgical procedure.

In the present study, we propose the quantification of HOD
using longitudinal imaging features with the aim of identifying
imaging features that correlate with the incidence of PFS in chil-
dren. The aim was to analyze and compare imaging features in
the ION on a longitudinal MRI dataset with the intention of
establishing a link between PFS and HOD. Association of
HOD and PFS will add to the existing evidence on the develop-
ment of PFS and potentially lead to a deeper understanding of
the pathogenesis of the syndrome. Segmentation was applied to
the IONs on each image in the longitudinal datasets, and quan-
titative features were chosen to describe longitudinal changes in
the area and intensity of the left and right IONs. Feature
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selection techniques were applied to these features in order to
identify the optimal feature set. A classification model was
applied to the original feature set as well as the optimized feature
subsets to demonstrate the improvement in classification accu-
racy when using the optimized feature subsets.

2 Study Dataset
The dataset was compiled from 28 of the total patients treated
for various histological types of posterior fossa tumors at Alder
Hey Children’s Hospital between 2007 and 2013. The patients
were aged between 8 months and 18 years old (at surgery), nine
of whom were diagnosed with PFS as reported qualitatively by a
consultant neuroradiologist who was blinded to the child’s neu-
rological condition. There exist two schema for diagnosis: sen-
sitive PFS and specific PFS. This study is based on correlating
HOD to the specific diagnosis; however, it is worth noting that
two additional patients within the dataset were also diagnosed
with sensitive PFS. The methodology of this study did not
require research ethics approval and instead was given institu-
tional approval by the director of research at Alder Hey.

Thirteen of these patients exhibited HOD, nine bilaterally (in
both ION), and four unilaterally (in either the left or right ION).
Follow-up MR images during 1 year postsurgery were reviewed
and up to five MR images were acquired longitudinally for each
patient across their treatment. A small subset of these datasets
included intraoperative MR images. Table 1 describes the MR
dataset acquired for each patient, showing the number of days
after surgery when an MR image was acquired. Negative num-
bers indicate a preoperative MR image, while intraoperative
scans are indicated as IO1 or IO2. Intraoperative scans were
acquired to determine whether the surgical aim had been
achieved. If the surgical aim was not achieved, some patients
had further resections and intraoperative scans. The first intra-
operative scan is indicated as IO1 and the second intraoperative
scan is indicated as IO2. Preoperative scans acquired on the day
of the surgery are indicated as 0. Most patients were followed up
every 3 months, while others with potentially malignant tumors
were followed up more frequently. A mean of 4� 1MR images
was acquired for each patient with a mean time interval of 109�
62 days between each image acquisition. The age column refers
to the patient’s age at surgery. Patients who were diagnosed with
HOD (as determined by expert radiological assessment) are
indicated as a 1, while those who did not develop HOD are

indicated as a 0. Similarly, patients were categorized according
to whether HOD occurred bilaterally (Bi-l) or unilaterally (Uni-
l), and whether the patient was clinically diagnosed with PFS by
a neurologist.

T2-weighted sequences from the pre-, intra-, and post-
operative scan were used to evaluate for HOD, and the follow-
ing parameters were used: TR ¼ 4485 ms, TE ¼ 11 ms,
slice thickness ¼ 6 mm, number of slices ¼ 20, time step ¼
4.49 s. The preoperative and postoperative MR images were
acquired using 1.5 T or 3 T magnets. Intraoperative MR images
were acquired using 3 T magnets. This modality was used due to
its ability to identify cerebrospinal fluid, blood, and edema as
increased gray-level intensity. The T1 MR images obtained
for these patients were not analyzed as they do not provide
sufficient information relating to hypertrophy in the ION.

T2 volumetric imaging is not routinely used as it is time-
consuming and prone to movement-associated artifacts.
Instead, axial T2 spin-echo sequences were used to evaluate
for HOD as they result in the best signal and contrast resolution
to assess the ION. These T2 MR images were acquired in spiral
MRI, which captures the k-space through a spiral trajectory.
This method of acquisition is fast and results in high in-plane
spatial resolution, giving improved resolution of small structures
within the brain, specifically the ION.7,8

3 Methodology
The aim of this study is to identify biomarkers that correlate with
the development of PFS following tumor resection surgery in
the posterior fossa. In order that these biomarkers may aid
understanding of the pathogenesis of PFS, techniques have
been chosen to ensure that comprehensibility of imaging and
clinical features is retained throughout the pipeline. This
study consists of four stages: image preprocessing, feature
extraction, feature selection, and classification. The features
were chosen to quantify HOD, namely, an increase in intensity
and size, in the left or right ION.

3.1 Image Preprocessing

In order to extract information (features) about each ION, it was
necessary to segment these structures on the MR images. Images
were acquired with spiral MRI; therefore, a full volumetric rep-
resentation was not obtained. For this reason, segmentation was
performed on two-dimensional image slices.

Fig. 1 Hypertrophic olivary degeneration: (a) unilateral case and (b) bilateral case.
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Table 1 Patient longitudinal dataset.

Pt Image acquisition: days after surgery Gender Age HOD Bi-l Uni-l PFS

1 1 110 194 — — — M 4 0 0 0 0

2 121 205 289 401 — — F 7 1 1 0 0

3 120 204 288 400 — — M 6 0 0 0 0

4 1 77 118 — — — F 0 0 0 0 0

5 1 98 231 413 — — F 4 0 0 0 0

6 −30 0 175 287 403 — F 4 0 0 0 0

7 143 318 437 — — — M 3 1 1 0 0

8 118 278 481 — — — M 7 1 0 1 0

9 176 260 372 — — — F 7 1 1 0 1

10 189 273 357 — — — F 7 1 0 1 0

11 −1 2 96 193 216 334 M 3 0 0 0 0

12 91 228 351 — — — F 8 1 1 0 1

13 18 21 165 228 — — F 14 1 0 1 0

14 IO1 76 87 28 60 — F 2 0 0 0 0

15 136 257 440 — — — F 5 1 1 0 0

16 89 285 — — — — M 1 0 0 0 0

17 313 481 — — — — F 6 1 1 0 1

18 IO1 110 446 — — — F 10 0 0 0 0

19 124 288 481 — — — M 17 1 1 0 1

20 97 181 321 — — — F 12 1 1 0 1

21 IO1 IO2 108 255 445 — M 11 0 0 0 0

22 IO1 IO2 125 — — — M 3 0 0 0 0

23 131 299 — — — — F 15 1 1 0 1

24 IO1 19 201 322 — — F 14 0 0 0 0

25 −2 IO1 IO2 173 509 — M 13 0 0 0 0

26 184 228 — — — — F 3 1 0 1 1

27 IO1 IO2 178 273 424 — M 8 0 0 0 1

28 IO1 1 110 292 — — F 7 0 0 0 1

Key

HOD Presence of HOD 1 ¼ yes, 0 ¼ no

Bi-l Presence of bilateral HOD 1 ¼ yes, 0 ¼ no

Uni-l Presence of unilateral HOD 1 ¼ yes, 0 ¼ no

PFS PFS diagnosis 1 ¼ yes, 0 ¼ no
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The non-HOD ION cannot be clearly delineated by the naked
eye on MRI. This is due to very low contrast with the surround-
ing tissue as well as its relatively small cross-sectional area. For
this reason, segmentation was carried out using a semiautomated
seed-growing technique in two-dimensional space. The right
and left ION were segmented separately. Images were registered
to Talaraich space, using a rigid body affine transformation, with
intensity scaling, prior to segmentation.

The process by which segmentation is carried out consists of
three main steps: (1) an arbitrary seed-point within the ION was
manually identified using prior anatomical knowledge—the
IONs are on the anterior part of the brain stem, located on either
side of its midline (when the IONs are hypertrophic their gray-
level intensity is relatively higher than surrounding brain stem
tissue and are therefore easier to identify); (2) region growing
from a seed-point, with intensity Is, was performed by analyzing
pixels in a search space of a 4 mm radius: a pixel within the
search space is included in the region of interest (ROI) if its
gray-level intensity, Ip, lies within the range jIp � Tj ≤ jIsj,
and its difference from adjacent pixels, Ia, lies within the
range jIaj ≤ jIp � Tj, where T is a threshold that was varied
between 12 and 16 heuristically until the ROI did not vary in
shape or size;9 (3) the application of a morphological clos-
ing-operation using a full-width at half-maximum of 4 mm
and a threshold of 0.5.9

These steps are applied iteratively until no further change
occurs in the ROI. The segmentation process was carried out
three times for each MR image in order to assess intraobserver
variability. The first segmentation dataset was validated and
amended by an expert neuroradiologist. This introduced a mea-
sure of interobserver variability as the first segmentation test set
was expertly validated, while the other two segmentation test
sets were not.

3.2 Feature Extraction

Once the desired region was segmented, it was possible to
extract a set of features from each ION. HOD is characterized
by an increase in volume of the ION, which can be seen as both
an enlargement and an increase in signal intensity on a T2-
weighted MR image. Imaging features related to an increase
in size and image intensity are extracted from the MR images.

The area of the left and right IONs is obtained as well as the
contrast between the left and right IONs and surrounding
brain stem tissue within the same MR image slice.

The contrast was calculated using the definition of Weber
contrast (W)

EQ-TARGET;temp:intralink-;e001;326;697W ¼ IION − Ib
Ib

; (1)

where IION refers to the mean gray-level intensity of the ION
and Ib refers to the mean gray-level intensity of the surrounding
tissue

For each MRI, the contrast of both the left and right IONs
was calculated separately. The segmentation of the left and right
IONs is exhibited in Fig. 2.

The imaging features are chosen to relate to physiological
characteristics of HOD, namely, a change in intensity with
respect to surrounding brain stem tissue and an increase in
area of the left and right IONs, respectively. It was desired to
quantify these characteristics longitudinally.

The contrast, defined in Eq. (1), for both the left and right
IONs, CL and CR, was obtained for up to 6 MR images per
patient acquired at different time points throughout each
patient’s treatment. The mean gradient of contrast against
time was calculated, symbolized by meanðΔCL∕ΔtÞ and
meanðΔCR∕ΔtÞ, respectively. The variance of gradient of con-
trast against time, varðΔCL∕ΔtÞ and varðΔCR∕ΔtÞ, was also
calculated across each patient’s longitudinal set of MR images.

Similarly, the area of the ION was calculated from each MRI
and the mean slope and variance across each longitudinal dataset
for the left and right IONs separately. These values are symbol-
ized by meanðΔAL∕ΔtÞ, meanðΔAR∕ΔtÞ, varðΔAL∕ΔtÞ, and
varðΔAR∕ΔtÞ.

Features determined by expert radiological assessment of
each MR image were also included, namely, whether HOD is
present (1) or not (0), whether HOD is present unilaterally
(1) or not (0), and whether HOD is present bilaterally (1) or
not (0). The neuroradiologist was blinded to the PFS status
of the patient. It is important to note that these features are
not mutually exclusive, and the lack of presence of HOD bilat-
erally may imply either unilateral HOD or no HOD.

Fig. 2 Segmentation of inferior olivary nuclei (delineated in black): (a) unilateral case and (b) bilateral
case.
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The features included are shown in Table 2. Features (1) to
(8) are obtained from MR data, features (9) to (14) represent
clinical data. Features (15) and (16) represent random noise
added in order to assess the discriminative ability of the feature
selection algorithms used later.

3.3 Feature Selection

Dimensionality reduction techniques, such as principal compo-
nent analysis (PCA), result in loss of comprehensibility from the
point of view of a clinical practitioner,10 rendering it inappro-
priate for this application due to the need for medics and clini-
cians to interpret results. PCA identifies linear combinations of
features as opposed to discrete ones and is therefore less appli-
cable to diagnosis.

From a machine-learning respective, to avoid the classifier
over fitting the data, in the case of too many features, it is desir-
able to use only the most relevant features in classifying data
into two groups: patients who have developed PFS and those
who have not. We, however, have an additional motivation;
the determination of diagnostically relevant medical indicators.
This is known as feature selection and can be carried out using
filter or wrapper methods.11,12

In general, the problem of feature selection is NP-hard and
therefore intractable for large datasets. Various techniques have
therefore been applied; however, these are all prone to local min-
ima. The most common techniques used to identify the salient
features out of the full feature set are random subset feature
selection (RSFS), sequential forward selection (SFS), and
sequential floating forward selection (SFFS).13,14

For each feature selection algorithm, a subset of features is
chosen and classification is carried out as a criterion for select-
ing the optimal features. A k-nearest neighbor (k-NN) classifier
was used in each algorithm as it is a generative technique that
follows the underlying distribution of data. A support vector
machine (SVM, used for classification in Sec. 3.4) was not
ideal for this task, as it is a discriminative technique and
hence more ideal for binary diagnostic classification. The rel-
evance of each feature was scored using a UAR as in the
case of the RSFS algorithm.13,14

RSFS chooses a random subset of features from the entire
feature set, the size of which is equal to the square root of
the total number of features. A k-NN classification using
three neighbors is carried out repeatedly on this chosen subset.
Each feature is given a relevance score that is continuously
updated according to its inclusion in the random subsets that
perform well.13,15 The relevance values of each feature are com-
pared to random walk statistics, and good features are chosen
accordingly. The algorithm is carried out until the stopping cri-
terion is reached, i.e., if the size of the final feature set (consist-
ing of the features with the highest relevance scores) has not
changed by more than 0.5% in the previous 1000 iterations,
or if the maximum number of iterations (300,000) is reached.
The RSFS algorithm was carried out 100 times, each time ran-
domly dividing the dataset in two.

Unlike RSFS, SFS starts off with an empty dataset. One fea-
ture is added at a time and a feature is kept or discarded depend-
ing on whether it exhibits the best classification performance
when used together with the previously chosen features. SFS
also makes use of k-NN classifier on the feature subset in
order to obtain a classification score. Low-scoring features
were discarded. In SFFS, an attempt is made at finding the
least useful feature in order to discard it from the final feature
set. This process is repeated until the evaluation score becomes
(and remains) better than the previous best score using a feature
set of the same size.13,14 Both the SFS and SFFS algorithms were
carried out using three neighbors, four neighbors, five neigh-
bors, and six neighbors. This process was carried out 100
times, and the average relevance scores were calculated.

All three-feature selection methods were carried out on three
separate segmentation test sets in order to assess differences in
scores that may arise due to intraobserver and interobserver
variability.

3.4 Classification

The binary classification was carried out in order to assess the
discriminative ability of the most relevant features chosen in the
previous stage of the study. The aim is to classify patients into
two groups: patients who developed PFS and patients who had
not developed PFS.

Two different feature subsets were used: the first subset
included the entire feature set, while the second subset included
the most relevant features chosen by the RSFS, the SFS, and SFFS
algorithms. A simple linear nonkernelized SVM was used to
perform the classification task. SVM is a state-of-the-art
classification model used for binary classification when the
dataset falls into two main categories (SVMs).16,17

Due to the small size of the dataset, it was not feasible to split
the data into training data and test data. Since there is no natural
division between training and test sets within the data, the most
efficient and ideal way to maximize the use of this small dataset
was to implement a leave-M-out cross-validation. In this

Table 2 Features included.

Feature Definition

1 meanðΔCL∕ΔtÞ

2 varðΔCL∕ΔtÞ

3 meanðΔAL∕ΔtÞ

4 varðΔAL∕ΔtÞ

5 meanðΔCR∕ΔtÞ

6 varðΔCR∕ΔtÞ

7 meanðΔAR∕ΔtÞ

8 varðΔAR∕ΔtÞ

9 Presence of HOD

10 Bilateral HOD

11 Unilateral HOD

12 Enlargement

13 Gender

14 Age at surgery

15 Random noise 1

16 Random noise 2
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validation technique, M observations are omitted from the entire
set for training purposes; the M observations are then used as the
test set; this process is repeated a number of times in order to
obtain a mean value for the area under the curve (AUC) and the
accuracy of the SVM classifier. A leave-eight-out cross-valida-
tion for each feature subset was carried out 100,000 times. For
each permutation, the SVM bias was varied between −4 and 4,
in increments of 0.2. The false positives and the false negatives
were obtained for each bias point, and a mean of these values
across all the permutations was obtained. Receiver operating
characteristic (ROC) graphs, exhibiting the false positives
against the true positives, were plotted in order to assess the dif-
ference in classification accuracy when using different feature
subsets; the area under the ROC curves was obtained. A
leave-one-out cross-validation was carried out for all the patients
(28 times) in order to obtain a mean accuracy score for each
feature subset.

4 Results

4.1 Features

Table 3 exhibits the mean, μ, and standard deviation, σ, for fea-
tures 1 to 8, for segmentation test sets 1, 2, and 3.

4.2 Feature Selection

Table 4 shows the relevance scores calculated by the RSFS algo-
rithm. Table 5 displays the relevance scores calculated by the
SFS algorithm, and Table 6 displays the relevance scores calcu-
lated by the SFFS algorithm using a k-NN classifier with 3, 4, 5,
and 6 neighbors; these algorithms yielded identical results.
Feature 1 consistently obtained the highest score for all feature
selection techniques.

4.3 Classification

Figure 3 exhibits the ROC curve for the SVM classifier used in
the full feature dataset and feature 1, the most relevant feature
found using the RSFS, SFS, and SFFS algorithms.

Table 7 reports the AUC for the SVM classifier for all three
segmentation test sets carried out on the full feature set and fea-
ture 1, as well as the average AUC and accuracy for the full
feature set and feature 1. A paired t-test was carried out to cal-
culate the significance of the difference between the AUCs of
the three ROC curves when considering feature 1, and the
three ROC curves when considering the whole feature set for
test sets 1, 2, and 3. The confidence interval was taken to be
95%. The two-tailed p-value was found to be 0.01.

5 Discussion
The results yielded by the RSFS algorithm in Table 4 indicate
feature 1 as the most relevant feature, scoring higher than all
other features considered in this study. This feature corresponds
to the mean slope of contrast in the left nucleus. The score for this
feature in each test set was 6.22, 8.99, and 10.03 for test sets 1, 2,
and 3, respectively. These scores are at least five times higher than
the scores for all the other features in the full feature set.

These results indicate that changes in contrast in the left ION
are the most relevant feature correlating with the development of
PFS. This implies that change in intensity of the left ION as seen
on MRI is highly correlated to the presence of PFS. This quan-
tified contrast in the left ION from patient MR is at least six
times as predictive as the diagnosis of HOD made by radiologi-
cal assessment as a predictor of PFS. Feature 1 is linked to HOD,
as a high value for meanðΔCL∕ΔtÞ, indicates increasing hyper-
intensity over time in the left ION and therefore the presence of
HOD in the left ION. This finding suggests that an overall
increase in contrast over time between the left ION tissue
and surrounding brain stem tissue indicates the development

Table 3 The mean and standard deviation of the imaging features for segmentation test sets 1, 2, and 3.

μ� σð×10−4Þ

Feature 1 2 3 4 5 6 7 8

Test meanðΔCL∕ΔtÞ varðΔCL∕ΔtÞ meanðΔAL∕ΔtÞ varðΔAL∕ΔtÞ meanðΔCR∕ΔtÞ varðΔCR∕ΔtÞ meanðΔAR∕ΔtÞ varðΔAR∕ΔtÞ
1 −2.26� 4.17 75.48� 82.89 0.51� 1.41 10.17� 19.58 −1.20� 5.64 105.49� 96.98 0.63� 1.49 12.40� 25.55

2 −1.64� 3.19 80.13� 91.00 −0.23� 0.78 3.59� 3.36 1.16� 6.35 89.29� 107.60 0.04� 0.93 3.79� 2.85

3 −1.21� 4.45 66.30� 56.75 0.85� 1.18 7.43� 11.64 −0.20� 5.08 86.10� 66.81 0.34� 1.14 6.85� 12.13

Table 4 The relevance scores calculated by the random subset feature selection algorithm.

Average relevance score over 100 iterations

Feature key

Test 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 6.22 1.61 1.08 1.81 1.64 0.23 0.65 0.11 1.06 0.94 0.16 0.03 0.42 0.09 0.00 0.00

2 8.99 0.09 0.31 1.41 1.03 0.20 0.28 1.22 0.92 1.77 0.27 0.10 1.28 0.30 0.00 0.00

3 10.03 1.24 0.00 0.42 0.00 0.12 1.62 0.15 1.19 1.46 0.00 0.00 0.18 0.59 0.00 0.00
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of PFS, irrespective of whether the HOD is unilateral or bilat-
eral, and whether the left or the right ION is brighter at any point
throughout the patient’s treatment. These findings are in keeping
with the results of a recent study where damage to the right effer-
ent cerebellar pathway, which communicates with the left ION,
had a significant association with the development of PFS.4,18,19

The results yielded by SFS and SFFS, exhibited in Tables 5
and 6, also indicate feature 1 as the most relevant feature, with
all other features scoring negligible relevance scores in compari-
son to feature 1. Feature 1 consistently scored 68.38 or higher
throughout all four tests (k ¼ 3, 4, 5, and 6) for all the

segmentation test sets. The relevance scores for the other fea-
tures in the feature set scored at least 70 times lower. This further
proves the relevance of an increase in intensity of the left ION in
the onset of PFS.

It should be noted that the search strategies used in this study
are not optimal and are prone to local minima, with the excep-
tion of SFFS which makes an attempt at eliminating irrelevant
features by carrying out a backward search in addition to the
forward search. Notwithstanding this, the feature selection
methods carried out in this study are ideal in a clinical scenario,
more than other methods, such as PCA, as the features retain
interpretability after the feature selection techniques are applied.

The results yielded by the SVM classifier, shown in Fig. 3,
show an increase in classifier accuracy as the least diagnostically
relevant features were eliminated. The SVM classifier reached
an accuracy of 89.29%, 78.57%, and 85.71%, respectively, for
each segmentation test set, when the only feature included was
the one selected by the RSFS, SFS, and SFFS algorithms, i.e.,
quantified contrast in the left ION. The AUC was also optimized
when classification was carried out using feature 1, with values
of 0.89, 0.85, and 0.89 for segmentation test sets 1, 2, and 3,
respectively.

Fig. 3 The receiver operating characteristic (ROC) curve for the support vector machine classifier used
on the full feature dataset and feature 1 on test sets 1, 2, and 3.

Table 5 The average relevance scores calculated by the sequential
forward selection algorithm over 100 iterations.

Average relevance score over 100 iterations

Test Feature key k ¼ 3 k ¼ 4 k ¼ 5 k ¼ 6

1 1 68.38 72.68 74.10 71.37

2 1 77.93 76.04 73.37 69.77

3 1 85.10 85.31 85.87 86.34

Table 6 The average relevance scores calculated by the sequential
floating forward selection algorithm over 100 iterations.

Average relevance score over 100 iterations

Test Feature key k ¼ 3 k ¼ 4 k ¼ 5 k ¼ 6

1 1 68.88 75.32 73.88 73.22

2 1 76.75 77.56 74.34 71.48

3 1 84.98 85.18 85.87 86.39

Table 7 Area under the curve (AUC) and accuracy for the support
vector machine classifier used on the full feature dataset and feature 1
on test sets 1, 2, and 3.

AUC Accuracy (%)

Test Full feature set Feature 1 Full feature set Feature 1

1 0.74 0.89 78.57 89.29

2 0.62 0.85 75.00 78.57

3 0.64 0.89 71.43 85.71

Average 0.67 0.88 75.00 84.52
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From Table 7, it is evident that for each segmentation test set,
the AUC and the accuracy are increased when only feature 1 is
used. The p-value measuring the difference between the AUCs
for the full feature set and the AUCs for feature 1 is statistically
significant by conventional criteria. This implies that the perfor-
mance of the SVM classifier is improved if only feature 1 is
considered.

The average slope of contrast in the left ION is obtained by
image analysis and is therefore objective, while the diagnosis of
HOD (by radiological assessment) is made by human assess-
ment and is subjective and prone to human error. This shows
that quantified contrast in the left ION can be used a biomarker
for PFS following posterior fossa tumor resection. This is one of
the pioneering studies correlating HOD and PFS using semiau-
tomated image analysis. A previous study exists; however, it did
not make use of semiautomated image analysis and instead
relied on human observation to identify HOD in each MRI.
Such analysis is subjective and prone to human error.4

6 Conclusion
The aim of the experiment was to investigate the link between
PFS and HOD in order to build upon the existing evidence on
the development of PFS and to lead to a deeper understanding of
the pathogenesis of the syndrome. A dataset of 28 patients was
included in this study. The main contribution of this work con-
sists of the quantification of HOD using automated imaging fea-
ture extraction to describe changes in intensity and size of the
ION longitudinally.

This study has identified intensity, or meanðΔCL∕ΔtÞ, in the
left ION as the most diagnostically relevant feature that corre-
lates with the development of PFS following tumor resection in
the posterior fossa.

Other features, including clinical features, consistently
scored lower than the average slope of contrast in the left
ION, throughout this study. Our findings indicate that the pres-
ence of HOD, specifically in the left ION, is highly associated
with the onset of PFS following tumor resection surgery in the
posterior fossa. These findings lend quantitative support to our
hypothesis that there is a correlation between PFS and the occur-
rence of HOD following tumor resection in the posterior fossa,
based on qualitative assessment of imaging. These results sug-
gest common anatomical substrates involved in the development
of PFS and HOD and indicate an element of laterality in the
development of this syndrome. This is the first study to quantify
HOD using semiautomated image analysis adding reproducible
and quantitative evidence to the proven hypothesis that HOD
correlates with PFS.
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