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Abstract. Current density imaging (CDI) is a magnetic resonance (MR) imaging technique that could be used to
study current pathways inside the tissue. The current distribution is measured indirectly as phase changes. The
inherent noise in the MR imaging technique degrades the accuracy of phase measurements leading to imprecise
current variations. The outcome can be affected significantly, especially at a low signal-to-noise ratio (SNR). We
have shown the residual noise distribution of the phase to be Gaussian-like and the noise in CDI images approxi-
mated as a Gaussian. This finding matches experimental results. We further investigated this finding by perform-
ing comparative analysis with denoising techniques, using two CDI datasets with two different currents (20 and
45 mA). We found that the block-matching and three-dimensional (BM3D) technique outperforms other tech-
niques when applied on current density (J). The minimum gain in noise power by BM3D applied to J compared
with the next best technique in the analysis was found to be around 2 dB per pixel. We characterize the noise
profile in CDI images and provide insights on the performance of different denoising techniques when applied at
two different stages of current density reconstruction. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
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1 Introduction
Low frequency current density imaging (LFCDI) is a magnetic
resonance imaging (MRI)-based technique which measures cur-
rent density inside a subject while a current pulse is injected into
the subject. The method was developed in the late 1980s and
early 1990s by Joy et al.1,2 This method has been tested on phan-
toms1,3,4 and also applied to the in vivo and ex vivo tissues in
order to obtain the current density map inside the subject.5–9

The method works based on the fact that the magnetic flux
induced by injected current can be measured using phase
changes recorded in MRI phase images.1 Although it is a
very useful method to study the current density maps, like
any other method it has some limitations in terms of image qual-
ity and implementation. The images can become very noisy and
unusable if acquisition parameters are not chosen appropriately,
the energy of the injected current pulse is not enough, or the size
of the studied subject is very small. The noise and its effect on
the current density images are studied in the literature in two
main works by Scott et al.10 and Sadlier et al.11 The former stud-
ied the effect of MRI acquisition parameters like echo time (TE),
injected current pulse width (Tc), and current amplitude on the
noise level in the images. The latter used the fact that the noise
distribution in real and imaginary images is zero mean Gaussian.
These real and imaginary images are used to calculate the phase
changes generated by induced magnetic flux. Sadlier et al.

subsequently studied the effect of this Gaussian noise on the
magnetic flux induced in one direction and also investigated
the effect of the strength of the main magnetic field of the
MRI machine on the level of measurable currents. Another work
by Lee et al.12 suggested ramp-preserving denoising for CDI
images by developing a new ramp preserving method based on
the Perona–Malik denoising method.13

In this work, the probability distribution of the measured
phase for each pixel inside the subject is derived and the current
density distribution is approximated. Furthermore, because the
distribution of noise in the real and imaginary images is
Gaussian and in the current density case the derived distribution
will be shown to be close to a Gaussian, three different denois-
ing methods are applied on a cylindrical phantom. These three
methods are ramp-preserving Perona–Malik (PM) denoising,13

two-dimensional adaptive Wiener filter,14 and the state-of-the-
art block-matching and three-dimensional (BM3D) filtering.15

The PM method is chosen as a ramp-preserving method already
used for CDI images, Wiener as a smoothing method, and
BM3D because it is shown to have a better performance com-
pared with the traditional denoising methods.15 The denoising is
performed at two different stages: first on the initial noisy real
and imaginary images recorded by MRI machine and second on
the final current density maps, and the results are compared with
the desired noiseless current density maps.

2 Method
The experimental data used in this paper were obtained by per-
forming a CDI experiment on a cylindrical phantom filled with
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9 g∕L · NaCl and 0.64 g∕L · CuSO4 solution with
T2 ¼ 170 ms and T1 ¼ 200 ms.16 The phantom had a diameter
of 4.5 cm and length of 9 cm. Two datasets were obtained: for
set 1, the current amplitude was 20 mA and for set 2 the current
was 45 mA. The first dataset had six slices and the second one
had five slices. The current pulses were generated by a pulse
generator circuit and amplified using an HP Harrison 6824A
power supply-amplifier which supports maximum peak-to-
peak voltage of 50 V for currents up to 1 A. The current injec-
tion system was constant current source. The current was main-
tained constant and was measured as a voltage across a 10 Ω
resistor in series with the phantom. Imaging was conducted
in a 1.5 T GE machine at Toronto General Hospital. The acquis-
ition parameters were TE equal to 40 ms, Tc equal to 18 ms,
number of excitations equal to 2, repetition time equal to
700 ms, a field of view of 15 cm, and the image size was 256 ×
256 pixels. The current was injected through copper disc elec-
trodes at the top and bottom of phantom. The current pulse
sequence for LFCDI is shown in Fig. 1.17

The axis of the cylinder was aligned with the z-direction and
it was parallel to the direction of the current. The coordinate
system was adopted from Scott et al.17 in which the z-direction
is perpendicular to the main magnetic field. The slices were
equally spaced and were perpendicular to the z-axis. Two

hollow bars of Plexiglas were positioned inside the phantom
to track different orientations. Due to the symmetry of the cyl-
inder, there was only one component of current density, which
was in the z-direction. Therefore, only Bx and By were mea-
sured by having a 90-deg rotation of the cylinder around its
axis. A spin-echo sequence was used for imaging and six slices
were defined with equivalent distance and in the x − y plane.
Figure 2 shows the empty phantom used for this experiment
and the magnitude image for one slice.

2.1 Distribution of Noise

As reported in the literature, the noise in the background of real
and imaginary images is zero mean Gaussian.11 This fact was
experimentally verified for the phantom experiment. The histo-
grams of background for real and imaginary images in a slice are
shown in Figs. 3(a) and 3(b), respectively, with a Gaussian dis-
tribution fitted to the samples (solid curve). The Gaussian dis-
tribution fitted to Fig. 3 has standard deviations of 10.75 and
10.57 for Figs. 3(a) and 3(b), respectively, and means of −0.04
and −0.08 for Figs. 3(a) and 3(b), respectively. It can be seen
that the distribution of background noise is almost zero mean
Gaussian and it has approximately the same distribution for
real and imaginary images. The standard deviation of this noise
can be extracted from the background.11,18 Therefore, if we
assume that for each pixel inside the subject XR is the random
variable representing the corrupted intensity in real images and
XI is the random variable representing the corrupted intensity in
imaginary images, we have for one pixel

XR ¼ Rþ NR NR ∼ Nð0; σÞ; (1)

XI ¼ I þ NI NI ∼ Nð0; σÞ: (2)

NR is the noise random variable for the chosen pixel in the
real image and NI is the random variable representing noise in
the imaginary image for the same pixel. Therefore, XR and XI
are Gaussian at each pixel with nonzero means R and I at that
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Fig. 1 Low frequency current density imaging (LFCDI) current pulse
sequence for one phase cycle.
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Fig. 2 (a) The cylindrical phantom, and (b) magnitude image for one slice.
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pixel. In this case, the joint distribution of XR and XI is a
bivariate Gaussian distribution given as

fðXR; XIÞ ¼
1

πν2
exp

�
−
�ðXR − RÞ2

ν2
þ ðXI − IÞ2

ν2

��

while ν ¼
ffiffiffi
2

p
σ: (3)

The distribution of the angle and magnitude of XR þ iXI can
be found using the Jacobian of the transformation as

fðθ; rÞ ¼ 1

πν2
r

· exp

�
−
�ðI2 þR2 þ r2 − 2rI sinðθÞ

ν2
−
2rR cosðθÞ

ν2

��

whileθ ¼ arg ðXR þ iXIÞ and r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
R þX2

I

q
: (4)

The symbol arg represents the argument of (XR þ iXI).
Because the current density is measured from the phase changes,
we find fðθÞ by integrating over r

fðθÞ

¼ 1

πν2

Z
∞

0

r·exp

�
−
�ðI2þR2þr2−2rIsinðθÞ
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��
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∞
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��
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(5)

Defining

C ¼ 2I cosðθÞ þ 2R sinðθÞ; (6)

¼ e−
ðI2þR2Þ

ν2

πν2

Z
∞

0
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2
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Changing variable u ¼ r − ðC∕2Þ,

¼ e−
ðI2þR2Þ

ν2 e
C2

4ν2
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Using the following identities

Z
e−ax

2

dx ¼
ffiffiffi
π

p
2

ffiffiffi
a

p ¼ erfðx ffiffiffi
a

p Þa > 0; (10)

Z
xe−ax

2

dx ¼ −
1

2a
e−ax

2

; (11)

the distribution can be simplified to

fðθÞ ¼ e−
ðI2þR2Þ

ν2

πν2

�
ν2

2
þ Cν

ffiffiffi
π

p
4

e
C2

4ν2

�
1 − erf

�
−

C
2

ffiffiffi
ν

p
���

while − π ≤ θ ≤ π: (12)

While erf is Gaussian error function, Eq. (12) shows the
wrapped phase distribution. Unwrapping will not change the
distribution, it will only shift the mean by 2kπ. The unwrapped
values are proportional to the induced magnetic flux (B).
Therefore, we can reason that B at each point has a distribution
similar to Eq. (12) just scaled or shifted.

To calculate each component of current density, derivatives
of two perpendicular components of the induced B should be
used. The derivatives are calculated using derivative templates.10

These derivative templates rely on an averaging operation in a
neighborhood to approximate the derivatives, therefore, their
application compromises the spatial resolution and itself acts
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Fig. 3 (a) Histogram of background noise in real image of a slice, and (b) histogram of background noise
in imaginary image of the same slice.
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like denoising. If a 3 × 3 template is used, the nine values of Bs
in the neighborhood of each point are used to calculate the
derivative at each point and two derivatives. Therefore, the
final distribution is the summation of 18 scaled distributions
of the form provided in Eq. (12). Using the fact that the distri-
bution of summation is a convolution of the distributions, we
can find the final distribution of the current density (J). It is
also known that the convolution of Gaussians is Gaussian,19

therefore, if the distribution in Eq. (12) is close to Gaussian,
we can conclude the noise distribution in the measured current
density is also Gaussian. Figures 4 and 5 show the distribution
for various values of R, I, and σ. The values chosen for R and I
in these figures are arbitrarily chosen in the range of observed
values for real and imaginary images. These figures show the
mean is dependent on R and I, while the variance depends
on R, I, and σ. We can also conclude that the distribution in
Eq. (12) can be approximated by a Gaussian for each point.
The Gaussian claim for fðθÞ can be quantified using kurtosis
and skewness measures.20 Furthermore, the normality of distri-
bution based on its samples can be classified using the
D’Agostino test20 which is based on kurtosis and skewness.

The results for Figs. 4 and 5 are shown in Table 1. The signifi-
cance level used for the D’Agostino test in this table is 0.01. The
table shows that for all the cases investigated in Figs. 4 and 5
except for one case, the distributions can be safely approximated
by a Gaussian. However in order to find the ranges of R, I, and σ
for which the Gaussian approximation holds, the kurtosis,
skewness, and D'Agostino test results for various ranges of R
and I (between 1 and 100 with step of 5) and σ are shown
in Fig. 6. The significance level used for the D’Agostino test
is 0.01. It can be seen that the ratio of magnitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ I2

p
to σ determines whether the Gaussian assumption holds. As
this ratio increases, the distribution gets closer to a Gaussian.
In both of our datasets, this ratio is close to 50 for a σ of approx-
imately 10, which means the distribution at each point can be
approximated by a Gaussian. We can verify the distribution of
noise in the phantom by performing a baseline analysis.21 In this
case, we record real and imaginary images twice when there is
no current in each orientation. The current is then calculated by
considering repeated images in each orientation as two phase
cycles of the CDI method.21 The resulting current density map
in A∕m2 and its histogram are shown in Figs. 7(a) and 7(b). This
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Fig. 5 (a) Probability distribution of θ [Eq. (12)], shown for pixels with various background noise standard
deviations for R ¼ 70 and I ¼ 50. (b) The distribution in (a) zoomed for θ between 0 and 2 rad.
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Fig. 4 (a) Probability distribution of θ [Eq. (12)], shown for pixels with various noiseless imaginary values,
noiseless real value of 15 (R ¼ 15), and standard deviation of noise σ ¼ 15. (b) The probability distri-
bution of θ [Eq. (12)] for a pixel with various noise levels, noiseless real value of 70 (R ¼ 70), and noise-
less imaginary value of 50 (I ¼ 50).
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histogram is reflective of the noise distribution because there is
not much change in real and imaginary images in the absence of
injected current, thus the real and imaginary images should be
almost constant. Figures 7(c) and 7(d) and 7(e) and 7(f) show the
calculated current density maps and their histograms when cur-
rent is injected for Dataset 1 and Dataset 2, respectively. It can
be seen that the noise distribution is only shifted when the cur-
rent is injected. The red curves on the histograms show the
Gaussian distributions fitted on the samples. For the no current
case, the mean of the fitted Gaussian is 0.03 and its standard
deviation is 3.62. The Gaussian fitted for Dataset 1 has mean
of 13.24 and standard deviation of 3.67, while for Dataset 2 the
Gaussian has mean of 29.45 and standard deviation of 3.19. This
matches the fact that the convolution of 18 Gaussians (for the
case of a 3 × 3 derivative template) is Gaussian itself and, there-
fore, the final J has a noise which is Gaussian while its mean and
variance depend on the R, I, and noise in the real and imaginary
images. In all three cases in Fig. 7, the background noise has
almost the same zero mean Gaussian distribution with a standard
deviation of approximately 10 and the noise in the current den-
sity images is also zero mean Gaussian with a standard deviation
around 3. For the cases where a current was injected, R and I are
not constant because of phase changes induced by the current.
However, the magnitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ I2

p
is constant for all three cases

in Fig. 7 because the phantom has the same homogeneous struc-
ture. Looking back at Eq. (12), we can see that if the background
noise σ is constant and the magnitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ I2

p
is constant, then

the distribution fðθÞ only depends on C. Functions C in Eq. (6)

for various Rs and Is satisfying a constant R2 þ I2 are the same;
they are only shifted. This can be shown mathematically as

R cosðθ þ ϕÞ þ I sinðθ þ ϕÞ ¼ R 0 cosðθÞ þ I 0 sinðθÞ;
(13)

where R 0 ¼ R cosðϕÞ þ I sinðϕÞ, I 0 ¼ I cosðϕÞ − R sinðϕÞ,
and R 02 þ I 02 ¼ R2 þ I2. This can also be verified by plotting
fðθÞ for a constant R2 þ I2 which is shown in Fig. 8.

Therefore, we can conclude that the standard deviation of the
noise in CDIs only depends on magnitude and for a material
with an approximately constant magnitude, the noise distribu-
tion in the current density has the same Gaussian distribution
for all the points. The only difference between such a subject
and our phantom is that the current density values are not
constant due to the lack of symmetry which translates into
Gaussian distributions for current densities with the same
standard deviation and the mean determined by the non-
noisy current density value at that point. The standard deviation
of this noise can be experimentally found for each magni-
tude level.

2.2 Denoising

As shown in Sec. 2.1, the noise in the final J could be approxi-
mated to be Gaussian, to remove the noise from CDI images we
evaluated three denoising methods, adaptive Wiener,14 ramp-
preserving PM13 which has been previously used for CDI
image denoising,12 and the BM3D15 method which was origi-
nally designed to remove Gaussian noise. The methods are
applied on the initial imaginary and real images (I-R) or on
the final current density images (J) and the results are compared.
For the Wiener filter and BM3D when applied to real and imagi-
nary images, we use the knowledge of the noise standard
deviation estimated from the background of the real and imagi-
nary images. Different block sizes were checked for the Wiener
filter when applied on I-R and the best choice which provides
the lowest sum of squared error (SSE) was 5 for Dataset 1 and 3
for Dataset 2. For PM smoothing, the best performance was
obtained by 10 iterations for Dataset 1 and 6 iterations for
Dataset 2, using a gradient modulus threshold of 30. The
BM3D algorithm is implemented based on Dabov et al.15

3 Results and Discussion
In evaluating the denoising performance of the techniques, SSE
on the normalized current values was used. The measured cur-
rents were normalized for ease of comparison between the two
datasets. To remove the unreliable points from the edges, the
final measured Js were eroded on the boundaries. This erosion
causes the loss of some area of the phantom in the imaging sli-
ces. In this analysis, we lost 19% of the area due to erosion,
therefore, the total measured (expected) current was around
16.2 mA for Dataset 1 and 36.5 mA for Dataset 2. Figures 9
and 10 show the box plots of the SSE on the normalized current
results for all scenarios in Dataset 1 and Dataset 2, respectively.
The data in each box plot are from multiple CDI acquisitions
(multiple slices). The measured current densities are normalized
by the injected currents’ amplitudes in milliamperes and SSE is
calculated between the normalized measured current densities
and the normalized expected current density. The normalized
expected current density is calculated by dividing 1 mA (nor-
malized current) over the area of the phantom slice because

Table 1 Kurtosis, skewness, and D’Agostino test results for Figs. 4
and 5.

R I σ Kurtosis Skewness D'Agostino test

70 50 4 2.9216 −0.0016 Normal

70 50 8 2.8912 −0.0018 Normal

70 50 12 2.8632 −7.1852 × 10−4 Normal

70 50 16 2.8496 −4.0417 × 10−4 Normal

70 50 20 2.8464 −0.0013 Normal

70 50 24 2.8384 −6.5718 × 10−4 Normal

15 10 15 2.7142 3.6240 × 10−4 Non-normal

15 30 15 2.8493 −5.4670 × 10−4 Normal

15 50 15 2.8418 1.1330 × 10−14 Normal

15 70 15 2.8530 −4.4175 × 10−4 Normal

15 90 15 2.8598 −6.9692 × 10−4 Normal

70 10 15 2.8513 −0.0021 Normal

70 30 15 2.8493 0.0017 Normal

70 50 15 2.8587 7.0504 × 10−4 Normal

70 70 15 2.8702 2.5749 × 10−4 Normal

70 90 15 2.8707 0.0011 Normal
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of the uniformity of the current density in the phantom. From the
SSE results, we can see that overall the BM3D method performs
better in denoising CDI images than the compared existing tech-
niques. It performs well both in applying denoising on the real
and imaginary images before calculating the phase as well as on
the final calculated current density map (J). The performance is
better when the BM3D method was applied to the final mea-
sured J than when it was only applied to R and I for both data-
sets. It can be noted that the normalized SSEs have higher values
for lower current because of the normalization by the current
amplitude; for higher currents the values will be lower. We
also computed the P-values to demonstrate the pairwise statis-
tical differences between SSE distributions between the tech-
niques. The statistical significance along with a lower SSE
demonstrates the pairwise comparative performance of the tech-
niques. The P-values calculated between different scenarios are

shown in Table 2. The P-values were calculated using an
ANOVA 1 test22 while the null hypothesis is that the data of
the compared scenarios were obtained from same dataset with
the same mean. It can be seen that for both datasets the P-values
show a significant statistical difference between PM and BM3D
and also between the Wiener and BM3D scenarios. The P-
values show more distinction for lower current values where
we have a lower signal-to-noise ratio (SNR) (Dataset 1). This
is expected since at lower SNRs, the real gain of denoising
is emphasized and this separates the SSE distributions of the
techniques.

To further quantify the gains obtained by applying the BM3D
method on J images, we considered the BM3D result as the
reference and calculated the average SSE per pixel between
BM3D and the other two methods (Wiener and PM). The results
are shown in Figs. 11 and 12 for both datasets. The data in each
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Fig. 6 (a), (d), and (g) kurtosis map of distribution f ðθÞ for various Rs and Is for σ equal to 8, 16, and 24,
respectively. (b), (e), and (h) Skewness map of distributions for various Rs and Is for σ equal to 8, 16,
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box plot are from multiple CDI acquisitions (multiple slices).
The comparative gain (dB per pixel) in denoising is evident
from the results. We also note that the noise suppression is
higher for PM in lower SNRs (Dataset 1), while it is higher
for Wiener in the higher SNRs (Dataset 2). The performance
of BM3D could be attributed to the fact that it uses a sparse
representation of images by exploiting the fact that there is struc-
tural redundancy and similarity in the images and that it also
uses a 3-D denoising method. It reconstructs the denoised
image by emphasizing the groups of patches with higher
similarity. Considering that our data were acquired using a
homogeneous cylindrical phantom, the structural redundancy
and similarity might have aided the BM3D to some extent;
further analysis in future studies using real world scenarios
should be done. However, because BM3D is shown to outper-
form other denoising methods on standard images,15 the results

can be extended to the application of CDI to tissues. Regardless
of the image structure, a better denoising performance is
expected from BM3D compared with the two other methods
(PM and Wiener). BM3D compared with PM has a wider
definition of image patterns. It deals with multiple groups of
similar patches instead of only the edge or nonedge patterns
dealt with in PM and on top of that it employs Wiener filtering.
Comparing BM3D with Wiener filtering, we can see that
although BM3D also relies on Wiener filtering, it also exploits
the image pattern similarities which Wiener filtering lacks. All
these denoising methods compromise the spatial resolution for
the sake of combating noise. Nevertheless, the approximation of
noise distribution in J as Gaussian has provided with the
motivation in exploring appropriate denoising methods that
would optimally remove the noise influence from the current
measurements.
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Fig. 7 (a), (c), and (e) Current density measured in A∕m2 when no current is injected (pseudocurrent
effect), 20 mA is injected (set 1), and 45 mA injected (set 2), respectively. (b), (d), and (f) Histograms of
these currents inside the phantom in a slice respectively and the fitted Gaussians (in red).
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Fig. 9 Box plot of normalized SSEs for different scenarios applied to
Dataset 1.
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Fig. 10 Box plot of normalized SSEs for different scenarios applied to
Dataset 2.

Table 2 P-values of SSEs for various scenarios.

Compared scenarios Set 1 Set 2

Wiener (I-R) and BM3D (I-R) 5.58 × 10−9 0.0034

Wiener (I-R) and BM3D (I-R) 2.7 × 10−8 0.0108

Wiener (I-R) and PM (I-R) 2.72 × 10−8 0.2078

PM (I-R) and PM (J) 9.7 × 10−8 0.077

Wiener (I-R) and Wiener (J) 2.18 × 10−6 0.0661

BM3D (I-R) and BM3D (J) 0.0404 0.2456

BM3D (I-R) and PM (J) 4.8 × 10−8 0.039

BM3D (I-R) and Wiener (J) 9.2 × 10−4 0.017
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Fig. 11 Box plot of BM3D noise suppression for Dataset 1.

Fig. 8 (a) Probability distribution of θ [Eq. (12)], shown for pixels for various Is (15, 20, 25, and 30) while
magnitude is constant and σ is 8. (b) The same probability distributions from part (a) zoomed between 0
and 2 for better view.
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4 Conclusion
The accuracy of current measurements using the CDI technique
is affected by the inherent MRI noise. This noise, which is
present in the initial real and imaginary images recorded by
the MR scanner, is reflected in the final measured current den-
sity map. In this work, we have shown that the current density
noise distribution at each pixel can be approximated by a
Gaussian that depends on the noiseless values of real and imagi-
nary images at the pixel and the variance of the background
noise. Three denoising methods were evaluated at two different
stages of the CDI current density measurement algorithm. Based
on the obtained results using two CDI datasets of phantom
images, the BM3D method which was originally designed
for Gaussian noise, performs better than the other two tech-
niques compared in this work. Furthermore, the BM3D method
also performs better when applied directly on the final calcu-
lated J which simplifies the denoising operation in comparison
to applying it on R and I images.

Acknowledgments
We would like to thank Mr. Eugen Hlasny and Mr. Neil Spiller
from Toronto General Hospital Medical Imaging Department,
who helped us in conducting MRI imaging and data collection.
Their technical comments and kind support contributed to this
work. We also thank Canadian Institute of Health Research
(CIHR) grant number 111253 for funding this research.

References
1. M. Joy, G. Scott, and M. Henkelman, “In vivo detection of applied elec-

tric currents by magnetic resonance imaging,” Magn. Reson. Imaging
7(1), 89–94 (1989).

2. P. Pesikan et al., “Two-dimensional current density imaging,” IEEE
Trans. Instrum. Meas. 39(6), 1048–1053 (1990).

3. S. H. Oh et al., “A single current density component imaging by
MRCDI without subject rotations,” Magn. Reson. Imaging 21(9),
1023–1028 (2003).

4. K. F. Hasanov et al., “A new approach to current density impedance
imaging,” in 26th Annual Int. Conf. IEEE Engineering in Medicine
and Biology Society, 2004, IEMBS04, Vol. 1, pp. 1321–1324, IEEE
(2004).

5. R. S. Yoon et al., “Measurement of thoracic current flow in pigs for the
study of defibrillation and cardioversion,” IEEE Trans. Biomed. Eng.
50(10), 1167–1173 (2003).

6. I. Serša et al., “Electric current density imaging of mice tumors,”Magn.
Reson. Med. 37(3), 404–409 (1997).

7. M. L. Joy, V. P. Lebedev, and J. S. Gati, “Imaging of current density and
current pathways in rabbit brain during transcranial electrostimulation,”
IEEE Trans. Biomed. Eng. 46(9), 1139–1149 (1999).

8. F. Foomany et al., “Correlating current pathways with myocardial fiber
orientation through fusion of data from current density and diffusion
tensor imaging,” Can. J. Cardiol. 28(5), S372–S373 (2012).

9. A. Patriciu et al., “Current density imaging and electrically induced skin
burns under surface electrodes,” IEEE Trans. Biomed. Eng. 52(12),
2024–2031 (2005).

10. G. Scott et al., “Sensitivity of magnetic-resonance current-density im-
aging,” J. Magn. Reson. 97(2), 235–254 (1992).

11. R. Sadleir et al., “Noise analysis of MREIT at 3T and 11T field
strength,” in 27th Annual Int. Conf. Engineering in Medicine and
Biology Society, 2005, IEEE-EMBS 2005, pp. 2637–2640, IEEE (2005).

12. C.-O. Lee et al., “Ramp-preserving denoising for conductivity image
reconstruction in magnetic resonance electrical impedance tomogra-
phy,” IEEE Trans. Biomed. Eng. 58(7), 2038–2050 (2011).

13. P. Perona and J. Malik, “Scale-space and edge detection using aniso-
tropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12(7),
629–639 (1990).

14. J. S. Lim, Two-Dimensional Signal and Image Processing, Vol. 1,
p. 710, Prentice Hall Englewood Cliffs, New Jersey (1990).

15. K. Dabov et al., “Image denoising by sparse 3-D transform-domain col-
laborative filtering,” IEEE Trans. Image Process. 16(8), 2080–2095
(2007).

16. T. DeMonte, “Low frequency current density imaging cylindrical phan-
tom experiment,” Tech. Rep., University of Toronto, Toronto, ON
(2001).

17. G. Scott et al., “Measurement of nonuniform current density by mag-
netic resonance,” IEEE Trans. Med. Imaging 10(3), 362–374 (1991).

18. R. M. Henkelman, “Measurement of signal intensities in the presence of
noise in MR images,” Med. Phys. 12(2), 232–233 (1985).

19. P. G. Hoel, S. C. Port, and C. J. Stone, Introduction to Stochastic
Processes, Houghton Mifflin Company, Boston (1972).

20. R. B. D’Agostino, A. Belanger, and R. B. D’Agostino Jr., “A suggestion
for using powerful and informative tests of normality,” Am. Stat. 44(4),
316–321 (1990).

21. F. Foomany et al., “A novel approach to quantification of real and arti-
factual components of current density imaging for phantom and live
heart,” in 2014 36th Annual Int. Conf. IEEE Engineering in
Medicine and Biology Society (EMBC), pp. 1075–1078, IEEE (2014).

22. R. V. Hogg and J. Ledolter, Engineering Statistics, MacMillan
New York (1987).

Mohammadali Beheshti is a PhD candidate in the Department of
Electrical and Computer Engineering at Ryerson University. He
received his MSc degree in wireless communications from McMaster
University in 2004 and his BSc degree in communications from
Isfahan University of Technology in 2002. He has authored and coau-
thored publications in biomedical engineering and signal processing
areas. His current research interest is medical imaging, biomedical
system modeling, and signal and image processing.

Farbod H. Foomany is a researcher in signal processing and soft-
ware/system security. He received his PhD from the University of
Huddersfield, UK, in 2010, on analysis of biometrics for crime reduc-
tion. He has master's and bachelor's degrees in computer and elec-
trical engineering, respectively. He has authored and coauthored
several conference and journal papers in the area of security,
crime reduction, and biomedical signal processing. His research inter-
ests include applications of biomedical signal processing, security of
software, and control systems.

Karl Magtibay obtained his BEng and MASc degrees in biomedical
engineering and electrical and computer engineering, in 2012 and
2014, respectively, from Ryerson University in Toronto, Canada.
He is a research analyst at University Health Network, Toronto
General Hospital. His research interest includes applications of medi-
cal imaging and digital signal and imaging processing techniques to
cardiac electrophysiology.

David A. Jaffray is the head of the Radiation Physics Department at
Princess Margaret Hospital as well as an associate professor in the
Departments of Radiation Oncology and Medical Biophysics at the

6

6.5

7

7.5

8

8.5

9

9.5

BM3D gain ove
r W

iener 3
x3

 on I-R

BM3D gain ove
r P

M ite
r=6 on I-R

dB
 p

er
 p

ix
el

Fig. 12 Box-plot of BM3D noise suppression for Dataset 2.

Journal of Medical Imaging 024005-9 Apr–Jun 2015 • Vol. 2(2)

Beheshti et al.: Noise distribution and denoising of current density images

http://dx.doi.org/10.1016/0730-725X(89)90328-7
http://dx.doi.org/10.1109/19.65824
http://dx.doi.org/10.1109/19.65824
http://dx.doi.org/10.1016/S0730-725X(03)00213-3
http://dx.doi.org/10.1109/TBME.2003.816082
http://dx.doi.org/10.1002/(ISSN)1522-2594
http://dx.doi.org/10.1002/(ISSN)1522-2594
http://dx.doi.org/10.1109/10.784146
http://dx.doi.org/10.1016/j.cjca.2012.07.645
http://dx.doi.org/10.1109/TBME.2005.857677
http://dx.doi.org/10.1016/0022-2364(92)90310-4
http://dx.doi.org/10.1109/TBME.2011.2136434
http://dx.doi.org/10.1109/34.56205
http://dx.doi.org/10.1109/TIP.2007.901238
http://dx.doi.org/10.1109/42.97586
http://dx.doi.org/10.1118/1.595711
http://dx.doi.org/10.1080/00031305.1990.10475751


University of Toronto. He has pioneered the development of Cone
BeamCT and is the recipient of many research awards. He completed
his PhD in the Department of Medical Biophysics at the University of
Western Ontario and has a BSc degree in physics from the University
of Alberta in 1988.

Sridhar Krishnan received his BE degree in electronics and commu-
nication engineering from Anna University in 1993 and the MS and
PhD degrees in electrical and computer engineering from the
University of Calgary in 1996 and 1999, respectively. He is a profes-
sor in the Department of Electrical Engineering at Ryerson University.
He has been a Canada research chair in biomedical signal analysis
since 2007 and an associate dean for the Faculty of Engineering and
Architectural Science since 2011.

Kumaraswamy Nanthakumar received his MD degree from the
University of Toronto in 1995. He is a director of heart rhythm

disorders at University Health Network and an associate professor
of medicine at the University of Toronto. His research interests are
the mechanisms of cardiac fibrillation, CPR (cardiopulmonary resus-
citation), and ventricular tachycardia. He was the recipient of the Early
Researcher Award from the Ministry of Innovation as well as the
Clinician Scientist Award from the Canadian Institutes of Health
Research.

Karthikeyan Umapathy is an associate professor in the Department
of Electrical and Computer Engineering at Ryerson University. He
received his BE degree in electronics and communication engineering
from Bharathiar University in 1992. He received his MPhil degree in
electronics, communication, and electrical engineering from the Uni-
versity of Hertfordshire in 2002 and his PhD in electrical and computer
engineering from the University of Western Ontario in 2006. He holds
an affiliate scientist position at St. Michael’s Hospital.

Journal of Medical Imaging 024005-10 Apr–Jun 2015 • Vol. 2(2)

Beheshti et al.: Noise distribution and denoising of current density images


