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Abstract. We developed robust, three-dimensional methods, as opposed to traditional A-line analysis, for
estimating the optical properties of calcified, fibrotic, and lipid atherosclerotic plaques from in vivo coronary artery
intravascular optical coherence tomography clinical pullbacks. We estimated attenuation μt and backscattered
intensity I0 from small volumes of interest annotated by experts in 35 pullbacks. Some results were as follows:
noise reduction filtering was desirable, parallel line (PL) methods outperformed individual line methods, root
mean square error was the best goodness-of-fit, and α-trimmed PL (α-T-PL) was the best overall method.
Estimates of μt were calcified (3.84� 0.95 mm−1), fibrotic (2.15� 1.08 mm−1), and lipid (9.99� 2.37 mm−1),
similar to those in the literature, and tissue classification from optical properties alone was promising. © The
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1 Introduction
Intravascular optical coherence tomography (IVOCT) provides
unique high-contrast microscopic resolution imaging of the vas-
culature.1–12 With regard to atherosclerotic plaques, IVOCT has
demonstrated an ability to differentiate lipid, calcium, and
fibrous tissue13,14 and to quantify microscopic features such as
macrophage content.9 We have previously reported on IVOCT
image analysis relating to segmentation, quantification, and
visualization of plaques, stents, and other vessel wall compo-
nents.15–24 We and others are using IVOCT to assess viability
of new coronary artery stent designs18–25 and quantitative evalu-
ation of atherosclerotic plaques.15–17 The goal is automated clas-
sification and segmentation of plaque types from clinical
IVOCT pullbacks. In this report, we focus on computational
methods and optimize processing for the reliable determination
of tissue optical properties from clinical data.

Trained cardiologists and image analysts can identify tissue
types (calcified, lipid, and fibrous tissues) with some accuracy
and repeatability, as shown in preclinical and clinical stud-
ies.4,6,12–14 Many use rules established by Yabushita et al.13 to
manually classify tissues. However, modern OCT systems can
create over 500 image frames in a single 2.5-s pullback scan,
making manual image analysis for research very labor intensive,
typically precluding measurements from every image frame.
During a demanding clinical procedure, it would be even
more difficult to manually analyze hundreds of image frames
in clinical decision making. Although IVOCT image quality

is outstanding, its limited depth penetration can sometimes
confound plaque characterization,6,25–27 posing challenges for
manual analysis, especially in the case of lipid or calcified pla-
ques underlying a fibrous cap. Image quality is affected by any
residual blood, but this is not a major concern with current
IVOCT blood clearing strategies. Additionally, catheter eccen-
tricity during IVOCT image acquisition may alter the appear-
ance of various plaque features and confuse IVOCT image
analysts.28 To be successful, an automatic computer classifica-
tion algorithm will need to use all image information available to
the human such as intensity, intensity changes, texture, border
sharpness, three-dimensional (3-D) shape characteristics, and,
perhaps most importantly, physical optical properties.

Several groups have measured tissue optical properties from
OCT images in vascular and other tissues using a variety of
experimental and theoretical methods. Most use a single-scatter-
ing model. We will review reports that measured attenuation and
backscattering coefficients in vascular tissues first.29–33 Xu et al.29

used a noncatheter-based approach by imaging transverse,
fixed tissue sections of coronary arteries; averaged 400 A-
lines over time; applied a single-scattering light model; and per-
formed least squares fitting of log transformed, average A-lines
to a linear equation. It was concluded that the calcified and
fibrotic plaques had a much lower optical attenuation coeffi-
cient, μt, than lipid plaques, and that lipid and fibrotic plaques
had a much higher backscattering coefficient, μb, than calcified
plaques (lipid: μb ¼ 28.1� 8.9 mm−1, μt ¼ 13.7� 4.5 mm−1,
calcified: μb ¼ 4.9� 1.5 mm−1, μt ¼ 5.7� 1.4 mm−1, and
fibrotic: μb ¼ 18.4� 6.4 mm−1, μt ¼ 6.4� 1.2 mm−1). Using
a catheter-based system and a stationary acquisition without
pullback, van Soest et al.30 measured μt in both in vivo and
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ex vivo specimens. They corrected for the nonideal imaging sys-
tem; averaged 15 to 20 A-lines in time; fitted a linear model to
log transformed data; and applied an elegant algorithm to deter-
mine regions in one dimension corresponding to a single,
homogenous tissue type. van Soest et al. argued that μb cannot
be estimated accurately along with μt using a single magnitude
OCT value alone at each point and reported only μt for calcified
(2 to 5 mm−1), fibrotic (2 to 5 mm−1), and lipid (>10 mm−1),
yielding trends similar to values reported by Xu et al.29 Levitz
et al.31 applied a multiple scattering model to OCT images of
phantoms and ex vivo aortas and estimated scattering coeffi-
cients and anisotropy factors. In other studies, OCT data
from both phantoms and ex vivo arterial samples were fit to sin-
gle and multiple scattering models.32,33 Since temporal averag-
ing of frames from a stationary acquisition is undesirable in the
clinical setting, frequency domain multiplexing with improve-
ment as compared with simple linear filtering has been proposed
to reduce speckle in single A-lines for optical property measure-
ment.34 As reviewed in Sec. 5, there is variability in reported
μt values between research groups due to methodological
differences including parameter estimation approaches.

Optical properties have also been estimated in other tissues
using OCT. Yang et al.35 determined the optical scattering coef-
ficient, μs, from unfixed normal and malignant, ex vivo ovarian
tissues. They found that the absorption coefficient, μa, for ovar-
ian tissue is small (∼0.006 mm−1) and that μt was a good
approximation to μs. Knu et al.26 determined the optical param-
eters from OCT images of pig and human skin using a multiple
scattering model. Lee et al.36 have studied the performance of
single and multiple scattering models using in vitro rat livers
and in vivo human skin. The methodologies were similar to
those used in blood vessels with 100 to 200 A-lines averaged
prior to fitting. In general, it is evident from the literature that
a single-scattering model is reasonable and is probably the only
statistically appropriate solution for noisy clinical IVOCT
images.

A goal is to fully automate tissue characterization in 3-D
IVOCT clinical pullbacks. Some recent reports use machine
learning for plaque classification from both preclinical and clini-
cal IVOCT data.37,38 Ughi et al.38 used μt estimates from a layer
model applied to single A-lines and two-dimensional (2-D) tex-
ture and geometric measures as features for classification.
Athanasiou et al.37 used 2-D texture and intensity features alone
and assumed “islands” of calcified tissue surrounded by other
tissue types, which is not necessarily true in many image frames.
These reports are encouraging and show that improved 3-D esti-
mation of optical properties could improve the classification.

The rationale for our research plan is as follows. Although it
is clear that the optical properties of plaques, such as the attenu-
ation coefficients, will be useful discriminatory features for
automated tissue classification, extracting optical properties
from clinical IVOCT data remains a challenge. Stationary
acquisitions29,30 are untenable, as they will require an additional
blood clearing operation to sample a single location. Estimation
from single, noisy A-lines gives large estimation variance.
Hence, our solution is to estimate optical properties from
small 3-D volumes of pullback image data and to use advanced
parameter estimation approaches which are robust against noise
outliers. In addition, we use in vivo clinical data rather than
image data from ex vivo samples as is typically used. This avoids
typical limitations of ex vivo imaging including potential tissue
degradation, no mean and/or pulsating pressure, no cardiac

motion, unrealistic temperatures, no blood artifacts, and a
straight path pullback rather than actual 3-D coronary geometry.
Moreover, in the event of spatially inaccurate, sparse histologi-
cal sampling, one can make inappropriate “ground truth” deter-
minations using ex vivo data. Instead we use ground truth
volumes of interest (VOIs) identified by trained analysts using
well-established criteria. Although independent histological
verification is desirable, there is no way to obtain it on in
vivo clinical data. Moreover, our approach is quite appropriate
for optimizing the 3-D parameter estimation methods in this
report. Methods should be equally applicable to 3-D cancer
imaging.

In this report, we correct the nonideal characteristic of OCT
imaging systems, use noise reduction filtering, estimate optical
parameters from small VOIs rather than single A-lines, reject
outliers, identify goodness-of-fit measures suitable for determin-
ing the quality of optical property estimates, and determine how
well optical properties alone can be used to classify plaque
types. Our basic paradigm is to compare estimation results
across 311 manually annotated VOIs.

2 Experimental Methods and Catheter
Correction

Images used in this study were selected from the database avail-
able at the Cardiovascular Imaging Core Laboratory of the
University Hospitals Case Medical Center (Cleveland, Ohio),
called the Core Lab. These images were collected on the C7-
XR swept-source OCT system (St. Jude Medical Inc., Westford,
Massachusetts). It has a swept laser source with a 1310-nm
center wavelength, 110-nm wavelength range, 50-kHz sweep
rate, 20-mW output power, and ∼12-mm coherence length.
The pullback speed was 20 mm∕s and the pullback length
was 54 mm. A typical pullback consisted of 271 image frames
spaced ∼200 μm apart. The test dataset consisted of 35 IVOCT
pullbacks of the left anterior descending and the left circumflex
coronary arteries and was chosen to be representative of typical
OCT scans obtained from patients prior to stent implantation.

To more accurately estimate μt, we need to account for cer-
tain characteristics of the IVOCT imaging system. We used
methods similar to those of van Soest et al.30 The imaging sys-
tem response in the presence of tissue attenuation μt is given
below:30

IðrÞ ¼ I0TðrÞSðrÞ expð−μtrÞ þ Ioff ; (1)

with

TðrÞ ¼
��

r − z0
zR

�
2

þ 1

�
−1∕2

; (2)

SðrÞ ¼ exp

�
−
�
r − zC
zW

�
2
�
; (3)

where r is the depth, I is the detected intensity, I0 is the initial
intensity, Ioff is the detected intensity at a depth of r ¼ 0, μt is
the attenuation coefficient, TðrÞ is the confocal function with z0,
the position of the beam waist and with zR, the Rayleigh length,
and SðrÞ accounts for the spectral coherence of the source in
Fourier-domain OCT with parameters zW (representing the
half-width of the intensity roll off) and zC (representing the
center of the scan).
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Intact catheters without a guide wire were inserted into a bot-
tle containing water or low concentration intralipid solution. The
catheter was firmly held in place using a vice-grip on the cath-
eter outside the bottle. The water image was used to estimate
background intensity. A low concentration 1∶128 intralipid
(Sigma Aldrich, 20%, emulsion) diluted in water provided an
image of scatterers without significant attenuation. Stationary
image sequences of 121 image frames and pullback sequences
of 271 image frames were obtained. About 100 IVOCT magni-
tude images were averaged. From the average frame, we aver-
aged 500 A-lines to obtain a very low noise A-line.

In intralipid images, we assumed μt to be low, eliminating the
tissue attenuation term [expð−μtrÞ]. Ioff was estimated from the
water images. zC and zW were obtained from the interferometer
setting and the specifications of the light source, respectively.
With these parameters fixed, I0, z0, and zR were estimated
by fitting Eq. (1) to average A-line data using nonlinear least
squares with the Nelder–Mead simplex optimization. A-line
data were truncated to exclude bright reflection from the catheter
sheath. Model fits were compared over pullbacks, catheters, and
acquisition modes (stationary versus pullback). Similar fits were
obtained in each case with less than 3% variation in parameters.
Clinical images were corrected using Eq. (1). We subtracted Ioff ,
the baseline intensity, and divided A-line intensities by the
term I0 · TðrÞ · SðrÞ.

3 Image Analysis

3.1 Volumes of Interest

We developed specialized software in MATLAB for obtaining
user-defined VOIs and for evaluating their optical properties. In
the software, pullbacks were loaded and image frames were pre-
sented to the expert, an IVOCT image analyst, in both ðx; yÞ and
ðr; θÞ views. Image data came from a manually analyzed Core
Lab study aimed at classifying plaque types and plaque burden
prior to stent implantation. The study classified quadrants of
IVOCT images as either fibrous, lipid, calcium, or normal. Core
Lab analysts were well trained in interpreting OCT image data.
For our study, the analyst determined start and stop image
frames for a homogeneous VOI. Then, in the ðr; θÞ view, the
analyst segmented the VOI using freehand brush strokes and
applied a plaque-type label (fibrous, lipid, or calcified). All seg-
mentations and labels for VOIs were saved in a convenient data
structure for easy retrieval and analysis. Standard criteria were
used by analysts to identify the various plaque types in pullback
image frames.13 Fibrous plaques were characterized by homo-
geneous, signal-rich regions; calcified regions by signal-poor
regions with sharp borders; and lipid plaques by signal-poor
regions with diffuse borders. In this study, we used 311 VOIs
from 35 pullbacks. The VOIs were of various sizes and shapes.
Most consisted of 2 to 5 image frames, 50 to 200 A-lines, and 20
to 50 sample points in each A-line.

3.2 Parameter Estimation of Tissue Optical
Properties

Each VOI was processed as follows. We applied 2-D noise
reduction filtering to linear data using a variety of filters [aver-
age filter (AF), median filter (MF), and Lee speckle reduction
filter (LF)39] with parameters listed later. To avoid any “edge
effects” during filtering, we applied 2-D filtering to entire image
frames and subsequently used the stored spatial coordinates of

each VOI to extract a “filtered”VOI. Any A-line with fewer than
five samples (points) was removed from consideration. Re-
arranging and taking the natural logarithm of Eq. (1), we get
the equation below:

ln

� ½IðrÞ − IoffðrÞ�
½Tðr; z0; zRÞ · SðrÞ�

�
¼ lnðI0Þ − μtr: (4)

In the event that the left-side term within square brackets was
≤0, we set its value to þ1. Equation (4) reduces to fitting a
straight line to the data. Parameter estimation methods included
individual line (IL) fits and parallel line (PL) fits to A-lines. In
IL fitting, a slope and intercept are fit to each A-line in a col-
lection of adjacent A-lines. In PL fitting, we fit one slope and
multiple intercepts to the collection as is rationalized next.
Assuming locally homogeneous tissue within a VOI, there
should be a single characteristic μt value and a single slope.
Intercepts depend upon distance from the catheter, the angle
of incidence with the lumen, depth in tissue, and so on, which
are observations consistent with the PL approach. Moreover, a
PLs’ model has many fewer parameters making it less sensitive
to noise. In addition, we have also employed methods that per-
form statistical analysis to reject data outliers for which we use
the term “robust.” The methods were:

IL, individual A-lines: Each corrected A-line was fit to
Eq. (4) yielding a set of μt and I0 values. Extreme out-
liers, i.e., lines with negative μt, were removed. Means
of μt and I0 were reported. Standard errors (SEs) were
computed from SE ¼ SD∕

p
n, where SD is the stan-

dard deviation and n is the number of A-lines
processed.

α-T-IL, individual A-lines with α trimming: In this robust
parameter estimation approach, we determined μt and
I0 for each A-line, removed extreme outliers, and rank
ordered results. A predetermined percentage, α, of μt ’s
(and corresponding I0’s) from the top and bottom of
the distribution was removed, and new mean μt and
I0 values were obtained. SEs were computed using
the same strategy as above.

IT-IL, individual A-lines with iterative trimming: In this
robust parameter estimation approach, we determined
μt and I0 for each A-line, removed extreme outliers,
and computed a new mean μt and I0. We then itera-
tively removed A-lines with μt’s outside mean�
2 ðSDÞ, with empirically determined n ¼ 3 iterations.
Finally, a mean μt and I0 were computed from the
remaining A-lines and reported. SEs were computed
as above.

PL, Parallel line fit to A-lines: We determined a μt and I0
for each A-line using IL fits and removed extreme out-
liers. On the remaining A-lines, a PL model with a sin-
gle slope and multiple intercepts was estimated, giving
a single μt and multiple I0’s. SEs were computed from
the MATLAB toolbox function aoctool.

α-T-PL, Parallel lines with α trimming: In this robust
approach, we determined a μt and I0 for each A-
line using IL fits, removed extreme outliers, and
rank ordered results. A predetermined percentage, α,
of μt ’s (and corresponding I0’s) from the top and bot-
tom of the distribution was removed. A PL model was

Journal of Medical Imaging 016001-3 Jan–Mar 2015 • Vol. 2(1)

Gargesha et al.: Parameter estimation of atherosclerotic tissue optical properties. . .



applied to the remaining A-lines. Parameter uncer-
tainty errors were computed as above.

IT-PL, Parallel lines with iterative trimming: In this
robust approach, we determined a μt and I0 for each
A-line using IL fits, removed extreme outliers, and
computed a new mean μt and I0. We then iteratively
removed A-lines with μt’s outside the mean� 2ðSDÞ
with an empirically determined n ¼ 3 iterations. A PL
model was applied to the remaining A-lines. Parameter
uncertainty errors were computed as above.

NIL-PL-TM, Individual lines followed by parallel lines
followed by noniterative trimming: In this robust
approach, we determined a μt and I0 for each A-line
using IL fits, removed extreme outliers, and applied
a PL fit to obtain a single-slope μPL and a standard
deviation SDPL. Next, we kept only those A-lines with
individual μt’s within μPL � 2ðSDPLÞ. We then com-
puted mean μt and I0 and reported values. SEs were
computed using the strategy for IL.

IL-PL-TM, Individual lines followed by parallel lines
followed by iterative trimming: In this robust approach,
we determined μt and I0 for each A-line and removed
extreme outliers. We applied a PL model to obtain a
single slope, μPL, and a standard deviation, SDPL.
Next, we kept only those A-lines with individual
μt’s within μPL � 2ðSDPLÞ. We iterated this process
(PL fit and removal of A-line outliers) two more
times. We computed a mean μt and I0 from the IL
fits. SEs were computed using the strategy for IL.

3.3 Data Analysis

For each VOI, we obtained μt and I0 estimates for each combi-
nation of filtering (three methods) and parameter estimation

(eight methods). Goodness-of-fit measures included coefficient
of variation (CV) given by the ratio of the parameter uncertainty
to the point estimate, the root mean square error (RMSE), and
adjusted R2, calculated as described in Ref. 40. For good filter-
ing and estimation methods, we want: (1) small parameter
uncertainty intervals, (2) small spread of point estimates across
many VOIs of a particular tissue type, (3) superior goodness-of-
fit values (high adjusted R2, low RMSE, and low CV), and
(4) high sensitivity/specificity from parameter estimates using
a supervised classifier.

3.4 Processing Parameters

We optimized the processing parameters in preliminary experi-
ments. The size of the filter window (7 × 7) and other param-
eters was tuned by examining their role on image appearance as
well as μt estimates. It should be noted that a filter kernel of
length 7 is approximately the same size as the 35 μm axial
point spread function of our system. We used a 7 × 7 window
for the LF, AF, and MF. Since VOIs were of irregular shape, we
obtained some short A-line segments which were omitted if they
contained fewer than five samples. To avoid fitting the baseline
noise floor, we ended consideration of A-line samples along r
when there was a run of nine samples below the baseline value
of six in the original linear data. This occurred in less than 1% of
A-lines as experts did not mark VOIs at large depths in the tis-
sue. For robust estimation with α trimming, we experimentally
determined an optimal value of α ¼ 10%. For iterative estima-
tion methods, we experimentally determined that three iterations
and two SDs gave good results. More details about optimization
experiments are in Sec. 4.

In an exploratory classification experiment, we used three
features (μt, hIi, I0), and a support vector machine (SVM) clas-
sifier with a linear kernel, fivefold cross validation, and feature
normalization. We used one-against-all to identify three tissue

Fig. 1 Appearance of atherosclerotic tissue types in IVOCT images. They are: (a) fibrous, (b) lipid, (c) cal-
cium, and (d) normal (media). The latter includes a zoomed inset to show the typical layered appearance.
In (e) and (f), a sample IVOCT image frame is shown in the ðx; yÞ (anatomical) and ðr ; θÞ (polar) views,
respectively. A calcified region is identified in red in both frames.
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types. Parameter settings of the classifier were determined from
preliminary optimization experiments with a subset of VOIs. We
weighted samples in inverse proportion to their prevalence.41

Performance results were averaged across the five folds.

4 Results
Example IVOCT images in Figs. 1(a)–1(d) show calcified,
fibrotic, lipid, and normal (media) regions in the ðx; yÞ view.
Figures 1(e) and 1(f) show a sample IVOCT image frame
from a clinical pullback in both ðx; yÞ (anatomical) and ðr; θÞ
(polar) views, with a calcified region identified in red. The
VOIs were marked on ðr; θÞ view because all subsequent proc-
essings were done on ðr; θÞ image data. The VOIs were mapped
to ðx; yÞ for presentation (Fig. 2). We have observed that, in gen-
eral, the tissue types in a region of interest do not change much
across successive frames, i.e., they have a high correlation, jus-
tifying the use of volumetric analysis in our study (Fig. 2).

We obtained images of intralipid and water and fitted the data
to the system model. Average A-lines from a stationary acquis-
ition are shown in Fig. 3. We ignored the very small upward
trend in water and used an average value for Ioff. Water images
were similar across the three tested catheters, and Ioff values
were close to baseline values at large r in clinical images. Using
the average A-line from dilute intralipid images, Eq. (1) was fit

to data over the “imaging range” from 1 to 2.5 mm. As described
previously, values for I0, z0, and zR were estimated using a least
squares fit [Fig. 3(b)] and other parameters were obtained from
system specifications. Parameters for the typical catheter in
Fig. 3 were: I0 ¼ 155, z0 ¼ 1.06 mm, zR ¼ 0.59 mm, Ioff ¼
6.39, zC ¼ 0 mm, and zW ¼ 12 mm.

We determined the sensitivity of μt estimates to the correc-
tion model parameter estimates. Table 1 shows the result for rep-
resentative VOIs using PLs to estimate μt. Values of μt changed
by only 3% to 7% with and without catheter correction. To study
the potential effect of variation between catheters, we perturbed
catheter parameters over a �5% range (a variation much larger
than observed) and determined the effect on μt. In general, dif-
ferent catheter correction parameters had a relatively minor
effect (typically <3%) on μt, smaller than the uncertainty due
to noise (see Sec. 4). Varying z0 had a bigger effect than vary-
ing zR.

Preprocessing methods were systematically tuned. Individual
A-lines with speckle were quite noisy and were visually evident
only after filtering trends. Using IL parameter estimation, noise
reduction filters substantially reduced SE uncertainties of
μt estimates [Fig. 4(a)]. SE was reduced from 0.8442 [no filter-
ing (NF)] to 0.5371 using AF, 0.446 using MF, and 0.1923 using
LF. Therefore, LF was deemed the best filtering approach. Small
variations in point estimates were obtained, but effects were

Fig. 2 Marking of VOIs in images across frames. Columns contain three successive image frames for
(1a–1c) calcium, (2a–2c) lipid, and (3a–3c) fibrous, corresponding to a single VOI. Because tissue types
are preserved across a few image frames with 200 μm spacing, we can process A-lines within VOIs. In
practice, such multiple VOIs would be obtained from a single homogenous region (not shown).
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inconsistent across VOIs, reducing the concern of potential bias.
Effects of noise reduction were less dramatic when using
other parameter estimation approaches, but trends were similar.
Since we want estimates to help distinguish one tissue type from
another, we analyzed the effect of filtering on the spread of esti-
mates for a single tissue type across many VOIs. For calcium,
LF reduced the spread of estimates by about 13% [Fig. 4(b)].
Similar results were obtained across other tissue types.

To optimize α in noniterative trimming, we varied α from 0%
to 40% in steps of 5%, and at each step, we computed μt and the
resulting RMSE for each VOI in a set of 84 VOIs drawn from all
three plaque types. Figure 5 shows the average RMSE across
VOIs plotted against α. The optimum RMSE was α ¼ 10%,
and this was used in subsequent experiments. Similarly, we opti-
mized k in iterative trimming, which preserved A-lines with μts
in the range (mean� k · std). We estimated μt and RMSE with
k ¼ 1, 2, or 3 and obtained an average RMSE versus k curve.
The optimal k ¼ 2 was used in subsequent experiments (not
shown).

Fig. 3 Determination of imaging systemmodel parameters. The aver-
age A-line in water is shown in (a) with intensity on a linear scale. In
(b), we plot the average A-line in intralipid (1∶128 dilution). We fit data
within the “imaging range,” as shown in red. z0 ¼ 1.057 mm and zR ¼
0.590 mm were estimated from these data. zC ¼ 0 mm and
zW ¼ 12 mm were otherwise obtained. Image data were acquired
in stationary mode and about 100 A-lines across time and θ were
averaged.

Fig. 5 Determination of optimal α for trimming. Using 84 VOIs drawn
from all three plaque types, we obtained RMSE versus α for each VOI.
The average RMSE curve plotted gave a minimum at α ¼ 10%.

Table 1 Effect of catheter correction on μt estimates obtained with the parallel lines’ (PLs’) method for a single-representative VOI from each tissue
type. The first two columns show μt estimates within the VOI with and without catheter correction. Fibrotic shows the least variation (3.8%), while
calcium (7.8%) and lipid (7.6%) show a larger variation in μt. We also applied a �5% perturbation to z0 (around a nominal value) keeping zR fixed,
and repeated the experiment with a�5% perturbation to zR (around a nominal value) keeping z0 fixed. Perturbation had aminor effect (<3% in most
cases) on μt estimates.

Tissue type No correction Correction w / Cath 5 z0 ¼ 0.984 mm −5%∕þ 5% zR ¼ 0.628 mm −5%∕þ 5%

Calcium 2.54 2.35 2.34 ð0.43%Þ∕2.37 ð0.85%Þ 2.36 ð0.43%Þ∕2.35 ð0%Þ

Fibrotic 2.08 2.00 2.06 ð3%Þ∕1.91 ð4.5%Þ 2.00 ð0%Þ∕1.99 ð0.5%Þ

Lipid 5.50 5.14 5.13 ð0.19%Þ∕5.16 ð0.39%Þ 5.16 ð0.39%Þ∕5.13 ð0.19%Þ
Note: All numbers in table refer to the μt estimate in mm−1.

Fig. 4 Effect of filtering on μt estimates obtained with IL. In (a), a sin-
gle calcium VOI with 122 A-lines was analyzed. IL was used to esti-
mate μt with no filtering (NF) and the three filtering methods—average
filter (AF), median filter (MF), and Lee filter (LF). Small (<5%) changes
of point estimates were obtained, but there were inconsistent trends
across other VOIs. Standard errors (SEs) were 0.8442 (NF), 0.5371
(AF), 0.446 (MF), and 0.1923 (LF). NF gave the largest uncertainty SE
expressed as a percentage of the point estimates (∼17%), while LF
gave the smallest (4%). (b) 106 calcium VOIs were analyzed using IL
and different filter treatments. Means and standard deviations of μt are
plotted. The LF had the smallest standard deviation across VOIs.
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We next compared the parameter estimation approaches.
Figure 6 illustrates IL and PL. In this calcified VOI, PL gave
a reduced parameter uncertainty (which results in a more robust
and accurate estimate) as compared with IL (see legend). Using
processing parameters from the above paragraph and LF, we
examined the effects from the eight parameter estimation
approaches. For a typical calcium VOI, α-T-PL and PL gave

smaller parameter uncertainty and SEs than other techniques
(Fig. 7). There were small changes in point estimates, but across
VOIs, there were no obvious trends. Over 111 fibrotic VOIs, the
distribution of μt as a function of estimation methods is shown in
Fig. 8(a) without censoring and Fig. 8(b) with censoring.
Censoring was done to remove VOIs having bad fits, i.e.,
RMSE > 6. With censoring on RMSE, the number of outliers

Fig. 6 A subset of seven A-lines from an example calcified VOI (a) is shown. These A-lines are fitted
using IL (b) and PL (c). In (a) and (b)s, A-lines have been color coded for clarity. (c) PL fitting where all
fitted lines (red) have same slope but different intercepts. The μt estimates (mean� std: error) were IL
(2.59� 0.24 mm−1) and PL (2.63� 0.14 mm−1). The PL typically results in smaller parameter uncer-
tainty and a more accurate estimate.
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Fig. 7 Comparison of parameter estimation methods. A typical calcium VOI containing 62 A-lines was
analyzed following LF. The following results were obtained (mean� std: error of μt): (1) IL: 3.99� 0.27 (8
lines removed), (2) α-T-IL: 4.11� 0.18 (24 lines removed), (3) IT-IL: 4.03� 0.24 (14 lines removed),
(4) PL: 3.81� 0.08 (8 lines removed), (5) α-T-PL: 4.17� 0.08 (24 lines removed), (6) IT-PL:
3.93� 0.09 (14 lines removed), (7) NIL-PL-TM: 3.78� 0.11 (38 lines removed), and (8) IL-PL-TM: 3.78�
0.11 (39 lines removed). α-T-PL and PL methods gave the smallest estimated uncertainty.

Fig. 8 Box whisker plot of μt as a function of estimation methods for (a) 111 fibrotic VOIs, and (b) a
censored subset of 79 VOIs obtained by applying an RMSE threshold of 6. The red bar is the median,
the edges of box are 25th and 75th percentiles, and the whiskers represent the most extreme points that
are not outliers. Outliers are denoted with red +’s. The RMSE censoring greatly reduced the number of
very large outliers and spread of μt estimates. With censoring, rank ordering on standard deviation across
VOIs is α-T-PL < PL < IT-IL < α-T-IL < IL-PL-TM < IT-PL < IL-PL-TM < IL. The (mean� std) of μt for
methods is: IL (2.55� 1.16), α-T-IL (2.26� 1.10), IT-IL (2.35� 1.10), PL (2.14� 1.09), α-T-PL
(2.18� 1.09), IT-PL (2.18� 1.11), NIL-PL-TM (2.06� 1.10), and IL-PL-TM (2.03� 1.13).
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in μt was greatly reduced. Since censoring tended to remove
VOIs having very large μt estimates, means were reduced
with censoring. Also, the error bars were smaller after censoring
as compared with before censoring, which meant that the μt esti-
mates were more robust after censoring.

Since we are ultimately interested in automated processing,
we analyzed the role of the size of the region of support on μt
estimates. Figure 9 shows a scatter plot of numbers of A-lines in
VOIs versus SE of μt. In general, lower SEs were obtained for
VOIs containing more A-lines. A large percentage (>80%) of
VOIs had 50 or more A-lines in them. This suggests that the
experts identified many homogeneous regions with >50 A-
lines and average length of 35 samples. The VOIs having at
least 50 A-lines resulted in an SE of typically <5% of the μt
estimate.

We are especially interested in goodness-of-fit measures
because they could become features in an automated machine
learning approach to classify plaque types. Adjusted R2 (Ref. 40)
is a good method for comparing fits of models with different

numbers of parameters [Fig. 10(a)]. Methods α-T-PL, PL, and
IT-PL had higher adjusted R2 than other methods, indicating
the appropriateness of PLs, a general observation across VOIs.
We observed improvements with PLs because the number of
free parameters was reduced from 2M to M þ 1, where M was
the number of A-lines. Although the adjusted R2 is a good
method to compare model order, its dependence on slope does
not allow comparisons across VOIs. For fibrous VOIs, RMSE
and CV histograms were plotted [Figs. 10(b) and 10(c)].

More than 90% of VOIs had RMSE < 12. The RMSE was
deemed the most appropriate goodness-of-fit for censoring
VOIs. When VOIs with large RMSEs were omitted, the variabil-
ity of μt estimates was reduced (Fig. 8) and classification
(Table 3) improved.

To evaluate the usefulness of optical properties as features in
an automatic classifier for atherosclerotic plaque tissue types,
we used three features (μt, hIi, I0), where hIi was the mean
intensity in the VOI. Intensity features are related to the back-
scattering characteristics of the tissue within the VOI as well as
any attenuation prior to the VOI, features which should aid pre-
diction of class membership. We used supervised classification,
SVM,41 fivefold cross validation, and one against all for each of
the three classes (Table 3). Data were processed without and
with RMSE-based censoring, where VOIs with RMSE > 12

were excluded. Classification improved with censoring [com-
pare Tables 3(a) and 3(b)]. (The RMSE threshold is different
from that used in Fig. 8 because we wanted to be uniform across
all three tissue classes.) Figure 11(a) shows a clear separation of
classes in 3-D feature space following VOI censoring. Features
(μt, hIi), the two best features, also demonstrated good separa-
tion in Fig. 11(b).

With all analyses considered, we determined that the PLs
and α trimming were both useful, with PL and α-T-PL producing
numerically close μt estimates. In general, we recommend α-T-
PL, LF, and possible censoring on RMSE value as best choices.
Using these choices, we obtained the following values of μt: cal-
cified (3.84� 0.95 mm−1), fibrotic (2.15� 1.08 mm−1), and
lipid (9.99� 2.37 mm−1). Computational estimation of μt
allowed us to distinguish between lipid plaques and calcium

Fig. 9 Effect of number of A-lines on μt estimates. SE of μt estimates
tends to reduce with VOIs having more A-lines. Processing included
LF, α-T-PL, no censoring. Tissue types are color coded. The mean
number of A-lines was 150 and 80% of homogenous regions have
≥50 A-lines. The solid black line is a linear fit that predicts an uncer-
tainty SE ∼ 0.12 mm−1 with 50 A-lines.

Fig. 10 Goodness-of-fit measures. (a) Adjusted R2 is plotted as a function of parameter estimation
method for a single-fibrotic VOI with 240 A-lines. The PL, α-T-PL, and IT-PL gave higher adjusted
R2 than others. (b) Histogram of RMSE for 111 fibrotic VOIs for α-T-PL. More than 90% had good
fits with RMSE < 12. (c) Using the same data, over 85% of VOIs have a CV < 0.5.
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plaques with a diffuse edge (Fig. 12). Typically, this is resolved
by experts only after analyzing adjacent frames.

5 Discussion
The characterization of tissue optical properties from 3-D
IVOCT clinical pullbacks will be an important step in reliable
tissue classification. Previous methods for estimating optical
properties have typically used time-averaged data in a stationary
acquisition29 or single A-lines from a pullback.30 Since station-
ary acquisitions are clinically impractical and single A-lines are
extremely noisy, we created a 3-D approach whereby groups of
A-lines close to each other are analyzed together. Innovations in
this report include: use of A-lines from within a 3-D VOI to
improve stability of estimates; advanced, robust parameter esti-
mation approaches including goodness-of-fit estimates; and a
rigorous methodology for comparing estimation methods
applied to clinical pullback data. Results suggest that filtering
is desirable, that estimates vary some with the method used,
that PL and its variants generally outperformed IL and its var-
iants, and that RMSE is the favored goodness-of-fit measure
which can be used effectively to “censor” VOIs with bad fits.
As detailed later, we deemed α-T-PL as best. In general, we
can conclude that the PL model, which fits one slope and multi-
ple intercepts to a collection of spatially adjacent A-lines, is
appropriate since there should be a single characteristic μt
value and a single slope for locally homogeneous tissue.

LF39 was the best filtering method among those tested.
Filtering visually reduced the noise in A-lines. Comparing filters
on a single VOI, the uncertainty of μt was minimized with the
LF [Fig. 4(a)]. Also, LF reduced the spread of μt across many
VOIs for a given tissue [Fig. 4(b)], presumably enabling better
separation of tissues. We did not observe any consistent bias due
to filtering on μt estimates. It is satisfying that a filter designed
for speckle noise gave the best results for parameter estimation
because speckle is the dominant noise in OCT images.

Comparing parameter estimation methods via multiple
assessments, we determined that PLs and α trimming were
useful and that the best overall method was α-T-PL. Compar-
ing results on a typical VOI, the uncertainty of μt was least
for α-T-PL (Fig. 7). Since we are ultimately interested in sepa-
rating tissue types, reducing the spread of μt estimates across
many VOIs is desirable. α-T-PL and PL gave a reduced spread
of μt across many VOIs as compared with other methods (Fig. 8,
legend). Since results were variable across filters, VOIs, tissue
types, and estimation methods, we developed a voting scheme
for comparing parameter estimation methods. For each VOI, we
picked a winning technique based on two different criteria:
(1) the smallest uncertainty SE of μt estimate, and (2) the small-
est RMSE goodness-of-fit for a VOI. We then counted across all
VOIs the number of times each technique was a winner and
sorted results. Based on criterion (1), we obtained the following
ranking of the four best techniques: α-T-PL > PL > IT-PL >
NIL-PL-TM. Based on (2), we obtained the following ranking:
IL-PL-TM > α-T-PL > NIL-PL-TM > α-T-IL. Since α-T-PL
was in the top two for both criteria, we deemed it best.
Although IL-PL-TM had the lowest RMSE, it had a large SE
uncertainty [it was not in the top four based on criterion (1)].
It is worth noting that having a smaller SE uncertainty is
more significant. This is because sometimes a good numerical
fit could be obtained with a high SE. Similarly, α-T-PL was
voted best when we rank-ordered standard deviations across
many VOIs of each tissue type. The computational complexity
of α-T-PL can be greatly reduced by saving intermediate
calculations.

There have been previous reports of μt (total attenuation
coefficient) and μs (scattering coefficient) for atherosclerotic tis-
sues in the literature.29–33 Our estimates of μt are consistent with

Table 2 Estimates of μt are consistent with values from two previ-
ously reported studies29,30 that have estimated optical properties of
atherosclerotic plaques using the same imaging system (1310-nm
center wavelength and 110-nm wavelength range).

Tissue type μt (estimated) (mm−1) μt (literature) (mm−1)

Calcified 3.84� 0.95 2–5

Fibrotic 2.15þ 1.08 2–5

Lipid 9.99� 2.37 ≥10

Table 3 Classifier performance using optical properties features (μt, hIi, I0). (a) Classifier performance on 311 VOIs using α-T-PL, SVM, one-
versus-rest, and fivefold cross validation. (b) VOIs with RMSE > 12 were removed, leaving 277 VOIs. Censoring improved classifier performance,
particularly for lipid.

TP TN FP FN SENSITIVITY SPECIFICITY

(a)

Calcium 18.4� 4.4 36.6� 5.2 4.4� 1.7 2.8� 1.9 0.86� 0.10 0.86� 0.05

Lipid 17.8� 4.3 40.4� 3.1 3� 1.6 1� 0.7 0.95� 0.04 0.93� 0.03

Fibrotic 19.6� 2.3 39.2� 4.6 0.8� 0.4 2.6� 1.7 0.89� 0.07 0.98� 0.01

(b)

Calcium 17.4� 5.1 32.6� 5.3 2.8� 1.8 2.6� 0.9 0.86� 0.05 0.92� 0.05

Lipid 12.8� 2.1 40.2� 2.2 2� 1 0.4� 0.5 0.97� 0.04 0.95þ 0.02

Fibrotic 19.8� 1.8 32.2� 1.3 1� 1 2.4� 1.8 0.89� 0.08 0.97� 0.03
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Fig. 11 (μt, hIi, I0) were used as features in automatic classification of VOIs using an SVM classifier into
three plaque types—fibrotic, lipid, and calcium. All three features are plotted in (a) and the two best fea-
tures are plotted in (b). 311 expert annotated VOIs from 35 IVOCT pullbacks. We used α-T-PL, LF, and
censoring of VOIs with RMSE > 12, leaving 277. Feature space indicates a good separation between all
three plaque types (calcified, fibrotic, and lipid). The (mean� std:dev:) of μt estimates was: calcified
(3.84� 0.95 mm−1), fibrotic (2.15� 1.08 mm−1), and lipid (9.99� 2.37 mm−1). Classification results
are in Table 3.

Fig. 12 Our robust estimation methods have helped us distinguish between a lipid plaque (a) and a
calcified plaque with a diffuse edge (b), both shown by blue arcs. This is often a source of confusion
at first glance during manual analysis. When we employed parameter estimation of μt, we could see
a significant numerical difference between the two cases (lipid: 8.62� 0.66 mm−1, calcium with diffuse
edge: 2.06� 0.23 mm−1), which we believe would aid in proper classification.
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two previously reported studies that have estimated optical
properties of clinically obtained atherosclerotic plaques using
the same imaging system but different estimation procedures
on stationary IVOCT acquisitions29,30 (Table 2) [calcified
(ours: 3.84� 0.95 mm−1, reported: 2 to 5 mm−1), fibrotic
(ours: 2.15� 1.08 mm−1, reported: 2 to 5 mm−1), and lipid
(ours: 9.99� 2.37 mm−1, reported: ≥10 mm−1)]. Some other
studies32,33 report much lower values of μt for lipid (2.7�
0.8 mm−1 and 3.2� 1.1 mm−1) and much higher values for cal-
cified (11.1� 4.9 mm−1), but these studies used ex vivo images,
a bench-top OCT scanner, and a different light source, therefore,
they are not comparable to our study. Another study at λ0 ¼
1300 nm31 reported μs and g values instead of μt making com-
parisons difficult.

The robust, 3-D methods proposed here for measuring opti-
cal properties of tissue should be applicable to other OCT
applications. Specifically, methods should be applicable to volu-
metric OCT cancer imaging, where optical properties have been
used to distinguish cancerous tissues.42–44

Because it is desirable to include the quality of assessment
with parameter estimates, we investigated goodness-of-fit mea-
sures. Adjusted R2 is a good way to compare models of different
orders. The PL methods (α-T-PL, PL, and IT-PL) gave higher
adjusted R2 than other methods (Fig. 10), but R2 depends on
slope and is inappropriate for assessing the fit in a particular
VOI. The CV was considered, but it was determined that the
CV simply favored VOIs with more A-lines. We prefer RMSE
because it is simple to compute and interpret. A histogram of
RMSE across many VOIs [Fig. 10(b)] shows that 90% of
VOIs have “good fits” with RMSE<12. Classification results
were improved when VOIs with RMSE > 12 were censored,
indicating that the RMSE could be a useful feature for auto-
mated processing going forward. For example, one could esti-
mate μt from regions, but additionally use the computed RMSE
value as a confidence in the μt estimate and weight the feature
accordingly during classification.

The exploratory classification study yielded surprisingly
good results based solely on optical property parameters
(Table 3, Fig. 11). The choice of classifier and other parameter
settings was determined from preliminary optimization experi-
ments in which a small subset of VOIs of all three plaque types
was employed. We used SVM, three tissue types, one-against-all
training, three features (μt, hIi, I0), and fivefold cross validation
to assess results. Censoring VOI data with poor fits (RMSE >
12) improved sensitivity and specificity as compared with
uncensored data for calcium and lipid VOIs, and only slightly
lowered specificity (while keeping the same sensitivity) for
fibrotic VOIs [Tables 3(a) versus 3(b)]. It was encouraging
that the optical parameter estimates allowed us to distinguish
between lipid plaques and calcium plaques with a diffuse
edge, often a problem during manual analysis (Fig. 12). In
manual analysis, analysts typically analyze adjacent 2-D frames
to make a determination using standard definitions provided by
Yabushita et al.13 It is promising that the computational methods
can determine this from optical properties alone.

The aim of our studywas to compare advanced parameter esti-
mation methods applicable to clinical 3-D IVOCT pullbacks.
This avoids the use of ex vivo data with its potential limitations
including potential tissue degradation, no mean or pulsating
pressure, no cardiac motion, unrealistic temperatures, no blood
artifacts, and a straight path pullback rather than actual 3-D coro-
nary geometry. Moreover, in the event of spatially inaccurate,

sparse histological sampling, one can make inappropriate
“ground truth” determinations using ex vivo data. Instead we
used as ground truth VOIs identified by well-trained analysts
using well-established criteria. Our VOI classification results
overestimate that which would be obtained in automatic process-
ing of pullback data. That is, analysts choose homogeneous,
easily identified VOIs, giving rise to relatively un-
ambiguous computer classification. In addition, analysts pur-
posely did not choose regions of macrophages and thrombi
because we were focusing on optical attenuation estimation
rather than other features. Our approach should be quite appro-
priate for optimizing the 3-D parameter estimation methods in
this report.

In summary, we believe that the robust processing methods
make it possible to assess tissue optical properties from noisy,
IVOCT clinical pullback data. In addition, optical parameters
thus obtained will be important image features for an automated
analysis of plaques. We believe that the 3-D methods reported
here for assessing optical properties will also be applicable in
volumetric OCT cancer imaging.
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