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Abstract. We demonstrate the use of task-based image-quality metrics to compare various photoacoustic image-
reconstruction algorithms, including a method based on the pseudoinverse of the system matrix, simple backpro-
jection, filtered backprojection, and a method based on the Fourier transform. We use a three-dimensional forward
model with a linear transducer array to simulate a photoacoustic imaging system. The reconstructed images cor-
respond with two-dimensional slices of the object and are 128 × 128 pixels. In order to compare the algorithms, we
use channelized Hotelling observers that predict the detection ability of human observers. We use two sets of
channels: constant Q and difference of Gaussian spatial frequency channels. We look at three tasks, identification
of a point source in a uniform background, identification of a 0.5-mm cube in a uniform background, and iden-
tification of a point source in a lumpy background. For the lumpy background task, which is the most realistic of the
tasks, the method based on the pseudoinverse performs best according to both sets of channels. © The Authors. Published
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1 Introduction
Photoacoustic imaging is based on the detection of acoustic
waves that are generated by thermoelastic expansion induced
by optical absorption of laser light. The majority of photoacous-
tic imaging systems can be classified as either microscopy sys-
tems or computed tomography (CT) systems.1 In general, the
microscopy-based systems do not require a reconstruction
step as the lateral resolution is set by either a focused transducer
or focused laser illumination. CT systems can be further subdi-
vided into scanning systems (also called synthetic aperture) and
array systems. From a mathematical point of view, synthetic
apertures and arrays require the same reconstruction algorithm,
although arrays tend to have smaller individual transducers so
the directivity can be more uniform over the imaging area.
Transducer arrays have a speed advantage as they do not
need to be mechanically scanned, which can be important in
many applications. In addition, the array-based imaging systems
have the potential to be integrated with ultrasound imaging
systems, and indeed many of the arrays in use in photoacoustic
systems are taken from ultrasound systems.2–4 In this paper we
consider a linear transducer array that is similar to the ones used
in current photoacoustic and ultrasound imaging systems.

There are several reconstruction algorithms used in linear
array imaging systems. Filtered backprojection is based on an
analytical inversion of the solution to the photoacoustic wave
equation.5 It is theoretically exact for a continuous, infinite lin-
ear transducer array, and when the object to be imaged is acous-
tically homogeneous and has no acoustic absorption. Unfiltered

(or simple) backprojection, although not theoretically exact, is
numerically equivalent to the delay-and-sum beamformer
method employed in ultrasound imaging systems, and hence
is very readily implemented in combined ultrasound-
photoacoustic imaging systems. The Fourier method of image
reconstruction is also based on inverting the solution to the
photoacoustic wave equation, but this inversion is performed
in the frequency domain.6 For sufficiently small datasets or
given sufficiently powerful computer hardware, all of these sim-
ple reconstruction algorithms can be used in real-time imaging
systems. There are more sophisticated reconstruction algorithms
that can correct for acoustic inhomogeneity and absorption
such as iterative methods.7 In general, these iterative algorithms
produce high-quality images; unfortunately, using current com-
puters they are not capable of real-time imaging.

The minimum-norm least-squares (MNLS) solution to recon-
structing a photoacoustic image is given by the pseudoinverse of
the system matrix, which relates the initial pressure distribution
to the measured pressure wave. In this paper, we calculate the
pseudoinverse using a singular-value decomposition (SVD).
The pseudoinverse calculation involves dividing by the nonzero
singular values of the system matrix. In practice, we have to
regularize the problem by throwing out small singular values
that would otherwise amplify the noise. Where to set the regu-
larization threshold depends on the specific signal and noise lev-
els. The noise in an imaging system can generally be divided
into object-dependent and object-independent noise. In many
imaging systems, such as x-ray CT, the object-dependent
noise varies strongly across detectors. In photoacoustics, how-
ever, the object-dependent noise is relatively uniform across
transducer elements (as long as the object is not too close to
the transducer). The object-independent noise (such as elec-
tronic noise) is also uniform across the transducer elements.
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The regularization level still depends on the relative strength of
the signal and noise, but it is possible to calculate a few pseu-
doinverse matrices based on different singular-value truncations,
store these in memory, and then decide in real time which one
to use based on image quality. Due to the more uniform noise
properties, we expect this method to work relatively better in
photoacoustics than, say, x-ray CT, which would benefit from
a more advanced regularization. Using this method the
reconstruction step consists only of a matrix-vector multiplica-
tion, which is very fast. In a recent publication, the system
matrix of a photoacoustic imaging system was measured exper-
imentally, and the corresponding pseudoinverse was calculated
ahead of time and used for real-time imaging.8 This method has
the advantage of including all the relevant acoustic properties in
the system matrix, but the disadvantages of requiring the exper-
imental measurement of the system matrix and the inevitable
inclusion of system noise in the measurement. In this paper
we develop a model for a two-dimensional (2-D) system matrix
and use that to calculate the pseudoinverse. We also develop a
three-dimensional (3-D) forward model to simulate a photo-
acoustic imaging system.

A natural question then arises as how best to select an algo-
rithm to optimize image quality. In a previous work,9 we per-
formed a preliminary comparison between the filtered
backprojection and pseudoinverse reconstruction algorithms.
In that paper, we looked at various metrics such as resolution,
streak length, and ideal observer signal-to-noise ration (SNR)
for a point source object; however, these metrics can be mislead-
ing. The resolution and streak length tell nothing of the noise
properties of the algorithms, and the ideal observer SNR
only measures how much information is lost for each algorithm
in going from the raw data to the reconstructed image, which
does not necessarily correlate with image quality as judged
by human observer task performance.

In this paper we demonstrate the use in photoacoustics of
so-called task-based metrics of image quality that seek to define
image quality based not on physical measures but on the utility
of an image for performing a predefined task. Such task-based
image-quality assessment has gained widespread attention in
nuclear medicine and x-ray imaging modalities.10 While the
gold standard of task-based assessment is human observer stud-
ies using the receiver operating characteristic (ROC) methodol-
ogy, these are tedious and labor-intensive. As an alternative,
various model observers have been proposed that seek to emu-
late human observer performance in well-defined tasks, such as
the detection of a known signal in a known or random back-
ground. The channelized Hotelling observer (CHO) has been
shown to predict human performance particularly well.10 It
entails integrating images over a set of frequency-domain chan-
nels that mimic the frequency response of the human visual sys-
tem and then applying a linear discriminant to the output. To
assess the image quality of the reconstruction algorithms in
this study, we use the CHO with two sets of channels that
have been shown to predict the performance of human observ-
ers: constant Q11 and difference of Gaussian (DOG) channels.12

2 System Matrix
The photoacoustic equation can be written as1

�
∇2 −

1

v2s

∂2

∂t2

�
pðr; tÞ ¼ −

β

CP

∂Hðr; tÞ
∂t

; (1)

where vs is the speed of sound, pðr; tÞ is the pressure, β is the
thermal coefficient of volume expansion, CP is the specific heat
at constant pressure, and Hðr; tÞ is the heating function. The
Green’s function solution for the pressure spectrum can be writ-
ten as13

p̃ðr;ωÞ ¼ iωβ
4πCP

Z
V0

d3r0H̃ðr0;ωÞ
e−ikjr−r0j

jr − r0j
; (2)

where k ¼ ω∕vs. The geometry we are considering is shown in
Fig. 1 and consists of a linear transducer array located on the x
axis with a cylindrical lens on its face and consisting of N indi-
vidual transducers, an object to be imaged in the half-space
z0 > 0, and a light source above the object pointing in the pos-
itive y0 direction. The cylindrical lens rejects acoustic waves that
do not originate near the imaging ðx0 − z0Þ plane. We assume
uniform light illumination on the imaging plane to avoid mod-
eling photon propagation. With this geometry, we can separate
the heating function spectrum into H̃ðr0;ωÞ ¼ μðr0ÞĨðωÞ,
where μðr0Þ is the absorption coefficient and ~IðωÞ is the irradi-
ance spectrum. The average pressure on each individual trans-
ducer is the pressure integrated over x and y divided by the area,
where the width in the x direction is w. The cylindrical acoustic
lens imparts a phase of e−ikdeiky

2∕ð2fÞ to the wave, where d is the
acoustic path length of the lens (refractive index times total
thickness of the lens) and f is the focal length. The lens has
a height of h and the transducer has a transfer function denoted
by ~TðωÞ. This gives the measured voltage spectrum as

ṼnðωÞ ¼
iωβĨðωÞT̃ðωÞe−ikd

4πhwCP

Z
w∕2þnw

−w∕2þnw

Z
h∕2

−h∕2
dxdyeiky

2∕ð2fÞ

×
Z
V0

d3r0μðr0Þz0
e−ikjr−r0j

jr − r0j2
; (3)

where n denotes each individual transducer and runs from
−ðN − 1Þ∕2 to ðN − 1Þ∕2. The middle transducer has n ¼ 0,
and the center of the middle transducer is located at x ¼ 0.
The extra z0∕jr − r0j is an obliquity factor.

In this paper we consider a 32-element transducer with cylin-
drical lens focal length of 6 mm, height of 3 mm, individual
element width of 0.15 mm, and center-to-center element spacing
of 0.15 mm. The transducer transfer function is Gaussian with a

Fig. 1 Geometry of photoacoustic imaging system.
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center frequency of 3.5 MHz and 50% bandwidth, and we
assume the laser pulse is sufficiently short so that
~IðωÞ ~TðωÞ ¼ I0 ~TðωÞ, where I0 is a constant. Note that the trans-
ducer spacing satisfies the Nyquist sampling criterion. For the
forward model, we use the full 3-D expression given by Eq. (3).
For the system matrix used to calculate the pseudoinverse, we
use a 2-D approximation of Eq. (3) with y ¼ y0 ¼ 0. For the
discrete version, we use the notation g ¼ Hf, where g is a vector
representing the voltage measured by the transducers, H is the
system matrix, and f is a vector representing the initial pressure
distribution of the object being imaged. We use a
128 × 128 pixel basis with a pixel size of 37.5 μm. The temporal
sampling rate is 100 ns with 71 samples per transducer, which
produces a system matrix of size 2272 × 16384.

3 Image Reconstruction

3.1 Pseudoinverse

We performed an SVD on the system matrix, which was then
used to calculate the pseudoinverse. The SVD factors the system
matrix into H ¼ USV†, where U and V† are unitary matrices,
the dagger represents conjugate transpose, and S is a diagonal
matrix consisting of the singular values in decreasing order.
The pseudoinverse is then given by Hþ ¼ VSþU†, where
Sþ is a diagonal matrix consisting of the reciprocal of singular
values above a threshold. The thresholding of the singular values
serves as a regularization. Note that this method is also referred
to as truncated SVD inversion. Figure 2 shows a plot of the mag-
nitude of the singular values. The image, which is an estimation
of the initial pressure f, is then given by f̂ ¼ Hþg.

3.2 Filtered Backprojection and Simple
Backprojection

The filtered backprojection formula5 can be written as

μðx0; z0Þ ¼ z0
X
n

gnðτnÞ � RðfcτnÞ; (4)

where gnðτnÞ is the time integrated pressure (along with
other constants), the convolution is with respect to
τn ¼ ½ðnw − x0Þ2 þ z20�1∕2∕vs, RðuÞ ¼ 4 sincð2uÞ − 2 sinc2ðuÞ,
sincðuÞ ¼ sinðπuÞ∕ðπuÞ, and fc is approximately the highest
temporal frequency in the data. Note that in the Fourier domain,
the filter is the Ram-Lak filter (ramp filter with cutoff fc). In
order to construct the filtered backprojection matrix, we used
impulses for gnðτnÞ that were time-integrated and interpolated
to increase the sampling rate to prevent quantization errors.14

A Hamming window was applied along the transducer elements
for apodization. The simple backprojection algorithm is equiv-
alent to the filtered backprojection algorithm except the pressure
is not time-integrated or filtered with the Ram-Lak filter. Note
that this filtered backprojection formula is built on a foundation
developed by Norton in the context of reflection tomography.15

An alternative algorithm has been developed by Burgholzer et
al. but has not been implemented in the present study.16

3.3 Fourier Method

The Fourier transform-based formula6 can be written as

μ̃ðkx; kzÞ ¼
kz
k
Ṽðkx;ωÞ; (5)

where k2 ¼ k2x þ k2z . ~Vðkx;ωÞ is constructed by taking the real
part of the Fourier transform with respect to time, and taking the
Fourier transform with respect to x. The image is formed by
employing bilinear interpolation and taking the inverse Fourier
transform of μ̃ðkx; kzÞ. Again, a Hamming window is used for
apodization. We are ignoring multiplicative constants that would
be required for quantitative results, as we did for the backpro-
jection algorithms.

3.4 Deconvolution

For the filtered backprojection, simple backprojection, and
Fourier based methods we deconvolve the transducer response
using

D̃ðωÞ ¼ T̃�ðωÞ
jT̃ðωÞj2 þ ζ

; (6)

where the asterisk indicates complex conjugation and ζ is a
regularization parameter that varies from 10−6 to 10. For
small values of ζ the deconvolution is the inverse of the trans-
ducer response and noise amplification occurs. When ζ is 10,
D̃ðωÞ ≈ T̃�ðωÞ, which is a matched filter. The matched filter
lowers the noise at the expense of resolution. For all of the
reconstructed images we perform envelope detection by taking
the absolute value of the analytic function of the image.

Figures 3 and 4 show the image reconstruction of a point
source and a 0.5-mm cube, respectively, for various singular-
value truncations as well as the backprojection, filtered backpro-
jection, and Fourier-based algorithms with different regulariza-
tion parameters. Uncorrelated Gaussian noise is added to
g before reconstruction to simulate electronic noise. The stan-
dard deviation of the noise is set to be equal to the peak signal
level divided by 10. There is no background for these images.
Figure 5 shows the image reconstruction of a lumpy
background17 for the different algorithms. For each lumpy back-
ground image, there is a corresponding image with lumpy back-
ground and point source signal. All of the images in Fig. 5
contain the same background; in the next section the number
of lumps and their locations are treated as random variables.
The lumpy background is only present in a volume represented
by a 0.5 mm cube at the center of the object. Uncorrelated
Gaussian noise is also added to g before reconstruction,
where, again, the standard deviation is set to the peak signal
level divided by 10.Fig. 2 Magnitude of singular values of system matrix.
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4 Image Quality
As mentioned in the Introduction, the CHO has been shown to
predict human observer performance for various tasks. The
choice of channels depends on the specific task to be performed.
In this paper we use two sets of channels: constantQ11 and DOG
channels.12 Constant Q channels have been shown to work well
at predicting human performance when the noise is additive and
Gaussian. DOG channels work well for additive Gaussian noise
as well as for a lumpy background. The channel profiles are
shown in Fig. 6.

In order to quantify image quality, we compute the channel-
ized Hotelling SNR given by11

SNR2
ch ¼ hf̂†chiK−1

ch hf̂ chi; (7)

where the brackets indicate expectation values, f̂ ch ¼ Uchf̂, Uch
is a matrix that represents the spatial frequency filtering and
summing of the channels, and Kch is the covariance matrix
of f̂ ch. Note that the covariance matrix is only a 5 × 5 matrix
for the constant Q channels and a 3 × 3 matrix for the DOG
channels, which means the number of simulations required to
make the matrix full rank is greatly reduced as compared to
the full image covariance matrix. In this study we use 500 sim-
ulations to construct Eq. (7). For the uniform background tasks,
uncorrelated Gaussian noise is added to g before reconstruction,
as discussed in the previous section. These tasks are referred to
as signal known exactly, background known exactly (SKE/
BKE). For the lumpy background17 task, the number of
lumps and their locations are treated as random variables.
The number of lumps, L, is modeled as a Gaussian random

Fig. 3 Image reconstruction of a point source for singular-value truncations of (a) 105; (b) 106; (c) 107; (d) 108; filtered backprojection with regulari-
zation parameters of (e) 10−5; (f) 10−3; (g) 10−1; (h) 101; backprojection with regularization parameters of (i) 10−5; (j) 10−3; (k) 10−1; (l) 101; and the
Fourier-based method with regularization parameters of (m) 10−5; (n) 10−3; (o) 10−1; (p) 101.

Fig. 4 Image reconstruction of a 0.5-mm cube for singular-value truncations of (a) 105; (b) 106; (c) 107; (d) 108; filtered backprojection with regu-
larization parameters of (e) 10−5; (f) 10−3; (g) 10−1; (h) 101; backprojection with regularization parameters of (i) 10−5; (j) 10−3; (k) 10−1; (l) 101; and the
Fourier-based method with regularization parameters of (m) 10−5; (n) 10−3; (o) 10−1; (p) 101.

Fig. 5 Image reconstruction of a lumpy background for singular-value truncations of (a) 107; (b) 107; (c) 108; (d) 108; filtered backprojection with
regularization parameters of (e) 10−2; (f) 10−2; (g) 101; (h) 101; backprojection with regularization parameters of (i) 10−2; (j) 10−2; (k) 101; (l) 101; and the
Fourier-based method with regularization parameters of (m) 10−2; (n) 10−2; (o) 101; (p) 101. A point source signal is also included in (b); (d); (f); (h); (j); (l);
(n);, and (p). The lumpy background is only present in a volume represented by a 0.5-mm cube at the center of the object.
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variable with a mean and variance of 1250. That number was
selected using hLi∕N ¼ 1∕100, where N ¼ 1.25 × 105 is the
number of discrete object points in a 0.5-mm cube in our sim-
ulations. The location of the lumps is modeled as a uniform ran-
dom variable over the volume represented by a 0.5-mm cube at
the center of the object. Each lump is modeled as a point source
with a magnitude that is 100 times lower than the point source
signal magnitude. Uncorrelated Gaussian noise is also added to
g before reconstruction for this task. This task is referred to as
SKE in a lumpy background and is a good model of tumor con-
trast agent imaging where the signal represents uptake of the
contrast agent by the tumor and the lumpy background repre-
sents contrast agent uptake by the surrounding tissue.

We define the CHO efficiency as

η ¼ SNR2
ch

SNR2
data

; (8)

where SNR2
data is given by

SNR2
data ¼ hg†iK−1

g hgi: (9)

In Figs. 7 through 9, we show the CHO efficiency for the
three tasks. For the SKE/BKE tasks, the efficiency is highest

Fig. 6 Channel profiles for (a) constant Q channels and (b) DOG
channels.

Fig. 7 CHO efficiency for the (a) constant Q channels and (b) DOG
channels for the point source SKE/BKE task.

Fig. 8 CHO efficiency for the (a) constant Q channels and (b) DOG
channels for the 0.5-mm cube SKE/BKE task.

Fig. 9 CHO efficiency for the (a) constant Q channels and (b) DOG
channels for the point source SKE in a lumpy background task.
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when the regularization is chosen so that the noise is lowest even
though the resolution is worse as seen in Figs. 3 and 4. The per-
formance of the algorithms is similar for the SKE/BKE tasks
except that the Fourier-based algorithm performs best for the
identification of the cube as determined by the difference of
Gaussian channels. However, the SKE/BKE task is generally
not a realistic model of actual imaging systems. For the SKE
in a lumpy background task, which is more realistic, the method
based on the pseudoinverse performs best according to both sets
of channels. Also notice that for this task the optimal regulari-
zation is not necessarily to choose the lowest possible noise
amplification. It is also interesting that for the three tasks studied
in this paper, the simple backprojection performs as well as the
filtered backprojection.

5 Conclusion
In this paper, we have used task-based image quality metrics to
compare image reconstruction algorithms in photoacoustic
tomography. The study was not intended to be the final word
on algorithm selection but rather to introduce the use of task-
based assessment and model observers to the field. As the
field grows and matures, it could be valuable to deploy such
tools for optimizing systems and algorithms for various tasks.

We have shown that for the case of a linear transducer array
and an SKE in a lumpy background task, the image
reconstruction algorithm based on the pseudoinverse performs
best according to the CHOs we look at in this paper. Future
work is planned to study the validity of the channels used in
this paper by performing human observer experiments. Future
work is also planned to study tasks that include signal variability.
It should be noted that in this paper we assume uniform light
illumination on the imaging plane. Depending on the specific sys-
tem and task to be performed this may not be a realistic
assumption, and in this case the laser irradiation geometry and
photon propagation should be included in the forward model.

Another interesting conclusion of this study is that the simple
backprojection algorithm performs as well as the filtered back-
projection algorithm for the tasks we looked at. Since the simple
backprojection algorithm is numerically equivalent to the delay-
and-sum beamformer reconstruction employed in existing ultra-
sound imaging systems, combined ultrasound-photoacoustic
imaging systems may be able to use this algorithm without
loss of performance. This would be advantageous in terms of
system design. The type of analysis presented in this paper
could be used to determine if this conclusion is valid for the
specific task the combined ultrasound-photoacoustic imaging
system is being built for.
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